

nanoMODUL-164

QuickStart Instructions

Using PHYTEC FlashTools for Windows and the Keil µVision2 Software Evaluation Development Tool Chain

Note: The PHYTEC Spectrum CD includes the electronic version of the English nanoMODUL-164 Hardware Manual

Edition: May 2003

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark (TM) and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC Meßtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Meßtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Meßtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC Meßtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Meßtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2003 PHYTEC Meßtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Meßtechnik GmbH.

	EUROPE	NORTH AMERICA	
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA	
Ordering Information:	+49 (800) 0749832 order@phytec.de	1 (800) 278-9913 sales@phytec.com	
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com	
Fax:	+49 (6131) 9221-33	1 (206) 780-9135	
Web Site:	http://www.phytec.de	http://www.phytec.com	

4th Edition: May 2003

Table of Contents

1	Intr	oductio	on to the Rapid Development Kit	1
	1.1		nentation Overview	
	1.2	Overv	iew of this QuickStart Instruction	2
	1.3	Systen	n Requirements	2
	1.4	The PI	HYTEC nanoMODUL-164	3
	1.5	The μ	Vision2 Software Evaluation Development Tool Chain.	6
2	Get	ting Sta	rted	9
	2.1		ing Rapid Development Kit Software	
	2.2	Interfacing the nanoMODUL-164 to a host-PC		
	2.3	\mathcal{C}		
		2.3.1	Starting PHYTEC FlashTools for DOS	18
		2.3.2	\mathcal{C}	
			DOS	
			2.3.2.1 "Hello"	
			2.3.2.2 "Blinky"	30
		2.3.3	Downloading Example Code with FlashTools for	
			Windows	
			2.3.3.1 "Hello"	
			2.3.3.2 "Blinky"	
3		_	ore Involved	
	3.1		g the μVision2 Tool Chain	
	3.2		ng a New Project and Adding an Existing Source File	
	3.3		ying the Source Code	
	3.4	_	g the Modifications	
	3.5	_	g Options for Target	
	3.6		ng the Project	
	3.7		loading the Output File	
		3.7.1	Downloading with FlashTools for DOS	
	2.0		Downloading with FlashTools for Windows	
	3.8	"Hello		61
		3.8.1	Creating a New Project	
		3.8.2	Modifying the Example Source	
		3.8.3	Setting Options for Target	
		3.8.4	Building the New Project	
		3.8.5	Downloading the Output File	
			3.8.5.1 Downloading with FlashTools for DOS	
		205	3.8.5.2 Downloading withFlashTools for Windows	
		3.8.6	Starting the Terminal Emulation Program	67

4 Del	bugging	69		
4.1	Loading the Example File			
4.2	Preparing the Debugger			
4.3	Preparing the Target Hardware to communicate with			
	the Debugger	73		
4.4				
4.5	Using the Keil µVision2 Debug Features			
	4.5.1 Breakpoints	75		
	4.5.2 In Line Assembler	75		
4.6	Single Stepping	76		
	4.6.1 Memory Window	77		
	4.6.2 Watch Window	78		
4.7	Resetting Simulator and the nanoMODUL-164	79		
5 Ad	Advanced User Information			
5.1	FlashTools	81		
	5.1.1 FlashTools for DOS	81		
	5.1.2 FlashTools for Windows	82		
5.2	Start164.a66	83		
5.3	Linking and Locating Debugging using Monitor kernel			
5.4				
Appendi	ices	89		
A	Troubleshooting			
	A.I µVision2 debugger in Monitor mode:			
	A.II Monitor Configuration Error	90		
Figures				
8	Development Board Overview	16		
Figure 2:	2: Suitable Development Board Jumper Settings			
Figure 3:	Power Connector	17		

1 Introduction to the Rapid Development Kit

This tutorial provides:

- general information on the PHYTEC nanoMODUL-164 Single Board Computer
- an overview of Keil's μVision2 software evaluation development tool chain, and
- instructions on how to run example programs on the nanoMODUL-164, mounted on the PHYTEC Development Board, in conjunction with µVision2.

Please refer to the nanoMODUL-164 Hardware Manual for specific information on such board-level features as Jumper configuration, memory mapping and pin layout. Selecting the links on the electronic version of this document links to the applicable section of the nanoMODUL-164 Hardware Manual.

1.1 Documentation Overview

This "Rapid Development Kit" includes the following electronic documentation on the enclosed "PHYTEC Spectrum CD-ROM":

- the PHYTEC nanoMODUL-164 Hardware Manual and Development Board Hardware Manual
- controller User's Manuals and Data Sheets
- this QuickStart Instruction with general "Rapid Development Kit" description, software installation hints and three example programs enabling quick out-of-the box start-up of the nanoMODUL-164 in conjunction with the $\mu Vision2$ software development tools.

1.2 Overview of this QuickStart Instruction

- 1) The "*Getting Started*" section uses two example programs "Hello"and "Blinky" demonstrate the download of user code to the Flash device using PHYTEC's FlashTools for Windows.
- 2) Section "*Getting More Involved*" provides step-by-step instructions on how to modify both examples, create and build new projects and likewise download output files to the nanoMODUL-164 using the Windows-based µVision2 tool.
- 3) The "Debugging" section provides a third example program "Debug" to demonstrate monitoring of the board and simple debug functions using the $\mu Vision2$ debug environment.

In addition to dedicated data for this Rapid Development Kit, this CD-ROM contains supplemental information on embedded microcontroller design and development.

1.3 System Requirements

Use of this 'Rapid Development Kit' requires:

- the PHYTEC nanoMODUL-164,
- the PHYTEC Development Board with the included DB-9 serial cable and AC adapter supplying 8-12 V / min. 500 mA.,
- the PHYTEC Spectrum CD,
- an IBM-compatible host-PC (486 or higher running at least Windows 95/NT)

For more information and example updates, please refer to the following sources:

http://www.phytec.com - or - http://www.phytec.de support@phytec.com - or - support@phytec.de

http://www.keil.com support@keil.com

1.4 The PHYTEC nanoMODUL-164

The nanoMODUL-164 is intended for use in memory-intensive applications and in running within a CAN-bus network. Half of the size of a credit card (47 by 38 mm.), the standard board is equipped with the Infineon C164CI controller as well as a Real-Time Clock which, like the SRAM, can be buffered by an external battery. The standard module runs at a 20 MHz internal clock speed (delivering 100 instruction cycles/ns) and offers 256 kByte (up to 1 MB) SRAM and 256 kByte (up to 1 MB) Flash on-board for DATA and CODE storage. PHYTEC FlashTools for Windows enable easy on-board download of user code to the external Flash device.

The nanoMODUL-164 is fitted with one RS-232 transceiver, an I²C RTC and a CAN-bus interface. All controller signals and ports extend to pin rows aligning two edges of the board. These pins provide a 16-bit bi-directional I/O port and 64 free port lines, including 8 analog inputs with 10-bit resolution. The nanoMODUL-164 has an industrial temperature range from 0 to 70 degrees °C (with extended range from -40 to 85 degrees °C except RTC only from -30 to 70 degrees) and requires only a 300 mA power source.

nanoMODUL-164 Technical Highlights

- SBC in matchbox-sized dimensions (47 x 38 mm) achieved through modern SMD technology
- populated with Infineon C164CI controller with Full 2.0B on-chip CAN
- instruction cycle time of 100 ns at 20 MHz clock speed in 16-bit, multiplexed bus mode
- 256 kByte (to 1 MByte) SRAM on-board and 256 kByte (to 1 MByte) Flash on-board
- RS-232 interface
- Full 2.0B CAN bus interface
- battery-buffered Real-Time Clock and SRAM
- prepared for operation with in-circuit emulators (such as ICE connect-16x)
- requires only +5V/300 mA power source in a temperature range of 0 to 70 degree C

The PHYTEC Development Board, in EURO-card dimensions (160 x 100 mm.) is completely equipped with all mechanical and electrical components necessary for the speedy and secure insertion and subsequent programming of the PHYTEC nanoMODUL series Single Board Computer. Simple Jumper configuration readies the Development Board's connectivity to the nanoMODUL, which plugs connectors-down into the high-density receptacle footprint connector mounted on the Development Board.

Development Board Technical Highlights

- RESET button
- BOOT button
- low-voltage socket and voltage regulator accepting an unregulated input voltage in a range from 8 to 12 VDC
- DB-9 connector (configured as an RS-232 interface)
- second DB-9 interface for CAN
- VG96-connector
- simple jumper configuration
- wire wrap field (64 x 69 mm) supporting development of user-designed peripheral hardware

1.5 The μVision2 Software Evaluation Development Tool Chain

The Keil μ Vision2 fully supports the entire Infineon C166 microcontroller line. It includes a C compiler, macroassembler, linker/locator and the Simulator and target monitor within the μ Vision2 IDE. Specific chips supported are the 161, 163, 164-CI, 165, 166, 167, and the 167CR. Future derivatives are easily accommodated due to the flexible Keil C compiler design.

μVision2 supports all in-circuit emulators that adhere to the Infineon OMF166 debugging specification. The Keil OH166 Object-to-Hex converter converts an absolute object file into an Intel-hexfile that is suitable for programming into an EPROM device or downloading into the Flash on the PHYTEC nanoMODUL-164 target board. μVision2 consists of the following executables:

C Compiler c166.exe
Assembler a166.exe
Linker l166.exe
Converter oh166.exe

• μVision2 uv2.exe (a Windows-based application)

Once installed, the default destination location for these files is the $C:\C166eval\Bin$ directory for the evaluation version while $\mu Vision2$ is in $C:\Keil\uv2$. Using the professional (i.e. full) version of the Keil tool chain, the default folder for these files is $C:\C166\Bin$. Access to these programs from Windows is accomplished with $\mu Vision2$. The entire tool set can be run from $\mu Vision2$ or directly from DOS with batch files. The Evaluation version is limited in code size to 8 kByte. All features operate normally, except these restrictions mentioned above.

μVision2 IDE

μVision2 is a Windows-based Graphical User Interface for the C compiler and assembler. All compiler, assembler and linker options are set with simple mouse clicks. μVision2 runs under Windows 95/98 and NT. This Integrated Development Environment (IDE) has been expressly designed with the user in mind. IDE includes a fully functional editor.

All IDE commands and functions are accessible via intuitive pull-down menus with prompted selections. It includes an extensive Help utility. External executables can be run from within $\mu Vision2$, including emulator software.

C166 C Compiler for the entire Infineon 166/167 family

The C166 ANSI compiler and A166 assembler are designed specifically for the Infineon 161, 163, C164CI, 165,166, 167, 167CR, and future derivatives. The C166 compiler easily integrates into the Keil RTOS and interfaces and passes debug information to the μ Vision2 simulator and all in-circuit emulators. Extensions provide access to on-chip peripherals. The Keil C166 compiler provides the fastest and smallest code using industry benchmarks.

A166 and A51 Macroassemblers

These two macroassemblers include their respective compiler package or they are available separately. All utilities needed to complete your project are included for all members of the respective assembler family. These assemblers are based on DOS or can be run from μ Vision2 which is included in every assembler and compiler package from Keil.

Debug Environment

 $\mu Vision2$ contains a software simulator supporting debugging either via software on a host-PC or in target hardware. When operated in conjunction with the Keil Monitor resident in target hardware, $\mu Vision2$ enable the following debugging functions:

- run/halt.
- set breakpoints,
- examine/change memory,
- view the stack,
- view/set peripheral information
- apply virtual external signals.

 $\mu Vision2$ has a performance analysis feature to ensure your code runs efficiently. In addition, $\mu Vision2$ has a disassembler/assembler that allows the modification of user code without recompiling. The evaluation version of $\mu Vision2$ is restricted to a 8 kByte in code. The evaluation version does not have a starting address restriction. An useful object code is produced.

There are no other than these restrictions, the tool set works exactly as the full version does. This allows you to completely evaluate the features and power of Keil products on the PHYTEC target board. The full version has no restrictions and is completely ANSI compliant.

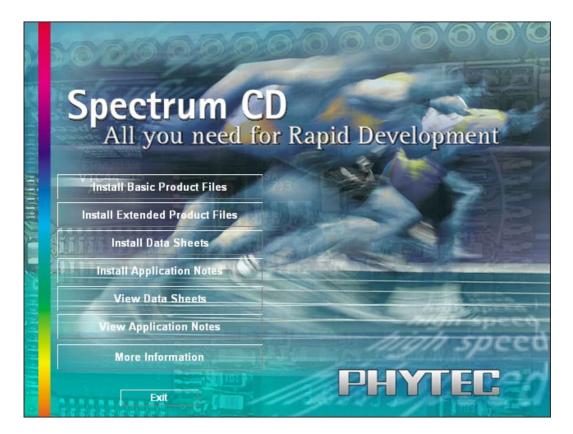
FR166 Full-Function RTOS for the Infineon C166 Family

The FR166 is a multitasking real-time operating system for the Infineon 166 family. Multiple tasks can be managed by you on a single CPU making your programs much easier to develop. The RTX166 Full includes CAN libraries. The RTX166 Tiny is a subset of the RTX166 Full and includes all C166 C compiler kits.

CAN (Controller Area Network) Library

The RTX51 and RTX166 Full RTOS supports CAN controllers with the included libraries. The CAN libraries are sold with the RTOS and support 11 and 29 bit identifiers. Keil 166 and 8051 C compilers interface with the RTOS and CAN libraries. Keil supports all CAN microcontrollers based on the Infineon C505C, C515C, C164-CI, and C167CR. Future CAN products based on these 8051 or C16x Families are easily supported due to the flexible Keil Compiler design.

2 Getting Started

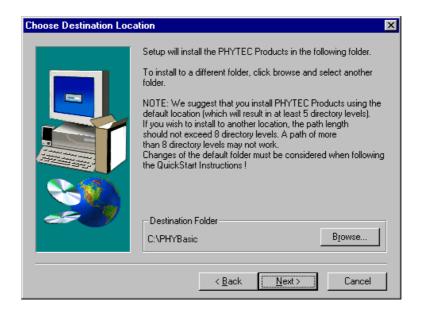

What you will learn with this Getting Started example:

- installing Rapid Development Kit Software
- starting PHYTEC's FlashTools download utility
- interfacing the nanoMODUL-164, mounted on the Development Board, to a host-PC
- downloading example user code in hexfile format from a host-PC to the external Flash-Memory using FlashTools

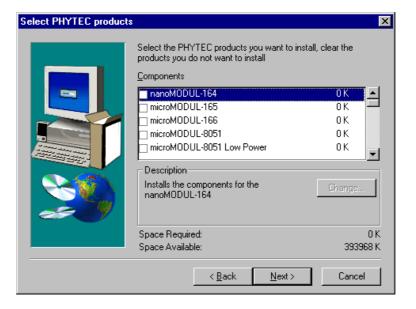
2.1 Installing Rapid Development Kit Software

When inserting the PHYTEC Spectrum CD into the CD-ROM drive of your host-PC, the PHYTEC Spectrum CD should automatically launch a setup program that installs the software required for the Rapid Development Kit as specified by the user. Otherwise the setup program *start.exe* can be manually executed from the root directory of the PHYTEC Spectrum CD.

The following window appears:



Choose Install Basic Product Files Button.


After accepting the Welcome window and license agreement select the destination location for installation of Rapid Development Kit software and documentation.

The default destination location is *C:\PHYBasic*. All path and file statements within this QuickStart Instruction are based on the assumption that you accept the default install paths and drives. If you decide to individually choose different paths and/or drives you must consider this for all further file and path statements.

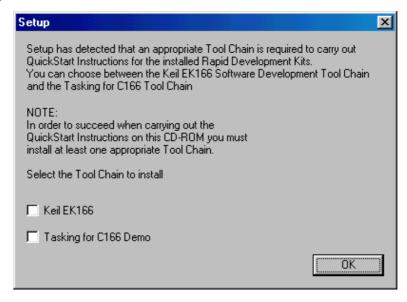
We recommend that you accept the default destination location.

In the next window select your Rapid Development Kit of choice from the list of available products. By using the *Change* button, advanced users can select in detail which options should be installed for a specific product.

All Kit-specific content will be installed to a Kit-specific subdirectory of the Rapid Development Kit root directory that you have specified at the beginning of the installation process.

All software and tools for this nanoMODUL-164 Kit will be installed to the \\PHYBasic\ directory on your hard-drive.

In the next dialog you must choose whether to copy the selected documentation as *.pdf-files to your hard-drive or to install a link to the doc. On the Spectrum CD.

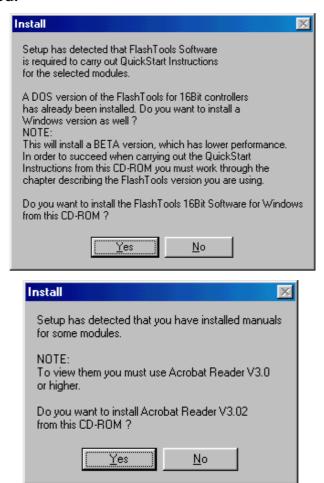

If you decide **not** to copy the documentation to your hard-drive you will need the PHYTEC Spectrum CD-ROM each time you want to access these documents. The installed links will refer to your CD-ROM drive in this case.

If you decide to copy the electronic documentation to your hard-drive, the documentation for this nanoMODUL-164 Kit will also be installed to the Kit-specific subdirectory. The manuals of the Development Boards are copied to their own specific subdirectories (e.g. \\PHYBasic\DevBnM\) because each Development Board is suitable for multiple Single Board Computers and is not dedicated to a specific Kit.

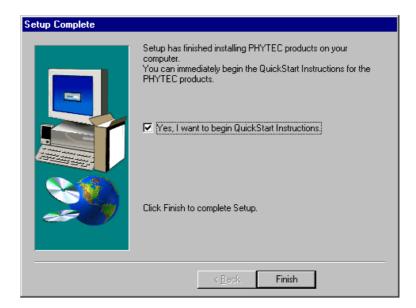
O .

Setup will now add program icons to the program folder, named *PHYTEC*.

In the next window, you choose the Keil EK166 Software Development Tool Chain.


After accepting the Welcome window and license agreement select the destination location for installation of the Development Tool Chain.

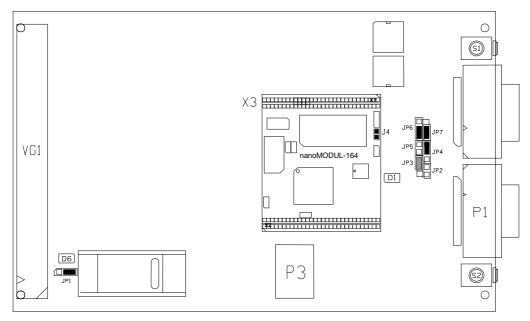
Depending on the Rapid Development Kit software you have selected, the applicable Keil µVision2 Evaluation Development tool chain will be installed to your hard-drive. Additional software, such as Adobe Acrobat Reader, will also be offered for installation.


The applicable Keil tool chain must be installed to ensure successful completion of this QuickStart Instruction. Failure to install the proper software could lead to possible version conflicts, resulting in functional problems.

We recommend that you install $\mu Vision2$ from the Spectrum CD-ROM even if other versions of $\mu Vision2$ are already installed on your system. These QuickStart Instructions and the demo software included on the CD-ROM have been specifically tailored for use with one another.

In the following windows you can decide to install FlashTools for Windows Beta Version and the Acrobat Reader. For better performance, you can use the DOS Flashtools which have already been installed.

Press Finish to complete the installation and decide if you want to begin the Quickstart Instruction immediately.



2.2 Interfacing the nanoMODUL-164 to a host-PC

Connecting the nanoMODUL-164, mounted on the PHYTEC Development Board, to your computer is simple:

• If the nanoMODUL is not already pre-installed, mount it pins-down onto the Development Board's receptacle footprint (X3) as shown in the Figure below.

Ensure that there is a solid connection between the modul pins and the Development Board receptacle. Also take precautions not to bend the pins when the nanoMODUL is removed from and inserted onto the Development Board.

PHYTEC Meßtechnik GmbH Development Board nanoMODUL-164

Figure 1: Development Board Overview

• Configure the Jumpers on the Development Board as indicated below. This correctly routes the RS-232 signals to the DB-9 connector (P1) on the Development Board.

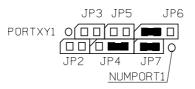


Figure 2: Suitable Development Board Jumper Settings

• Configure Jumper JP1 on the Development Board as indicated below to supply the board through the power socket (P3).

- Connect the RS-232 interface of your computer to the DB-9 RS-232 interface on the Development Board (P1) using the included serial cable.
- Using the included power adapter, connect the power socket on the board (P3) to a power supply (refer to *Figure 3* for the right polarity).

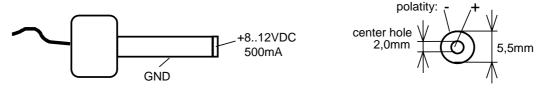


Figure 3: Power Connector

• Simultaneously press the Reset (S1) and Boot (S2) switches on the Development Board, first releasing the Reset (S1) and then, two or three seconds later, release the Boot (S2) switch.

This sequence of pressing and releasing the Reset (S1) and Boot (S2) switches renders the nanoMODUL-164 into the Bootstrap mode. FlashTools for Windows must always be operated in this mode. See section 5.1.1 for more details. Ensure that the terminal program flasht.exe is always invoked only after first resetting the board.

Now the nanoMODUL should be properly connected via the Development Board to a host-PC and power supply. After executing a Reset and rendering the board in Bootstrap mode, you are now ready to program the nanoMODUL-164. This nanoMODUL/Development Board combination shall also be referred to as "target hardware".

2.3 Downloading Example Code

2.3.1 Starting PHYTEC FlashTools for DOS

FlashTools should have been copied to your hard drive during the initial setup procedure as described in section 2.1. A link also should have been added to your *PHYTEC Rapid Development Kit|nanoMODUL-164* program group which allows you to easily start FlashTools by selecting the appropriate icon.

Alternately you can manually copy FlashTools from within the \nM164\Tools\Flasht directory of your PHYTEC Spectrum CD. FlashTools consists of three files - the flasht.exe (user interface as DOS executable file), boot (the second stage loader) and flash (the microcontroller firmware). FlashTools (flasht.exe) is a utility program that allows download of user code in *.h86-file format from a host-PC to a PHYTEC Single Board Computer (SBC) via an RS-232 connection. FlashTools uses the Bootstrap Loader mechanism of the nanoMODUL-164 to transfer and execute the firmware. FlashTools consists of a firmware transferred to the external RAM using the Bootstrap Loader and corresponding software executed at the host-PC. Proper connection of a PHYTEC SBC to a host-PC enables the software portion of FlashTools to recognize and communicate with the firmware portion.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash you must use the three files from the subdirectory FlashtMx in the Flasht directory. This is because an external GAL device is used to configure large or small memory models at a hardware level. Both memory model types require a special version of FlashTools.

Each set of **boot** and **flash** files found in any directory of the PHYTEC Spectrum CD is specially tailored for use with a specific controller on a particular PHYTEC Single Board Computer. Take care not to interchange sets of files! The wrong set usually will not work with other controllers and, hence, will lead to a configuration error. Refer to section 5.1.1 for details.

• You can start FlashTools for DOS for your nanoMODUL-164 by selecting either the *FlashTools (COM1)* or *FlashTools (COM2)* icon within the *Programs/PHYTEC Rapid Development Kit/nanoMODUL-164* program group. We always recommend to use the installed icons.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the icons *FlashTools Max (COM1)* or *FlashTools Max (COM2)*.

• You can also start FlashTools by running the executable from within a DOS box by typing *flasht br*(9600) x. This sets the baud rate to 9600 baud and uses serial port x (x = appropriate COM port of your computer).

2.3.2 Downloading Example Code with FlashTools for DOS

• Start FlashTools for DOS for your nanoMODUL-164 by selecting either the *FlashTools* (*COM1*) or *FlashTools* (*COM2*) icon within the *PHYTEC Rapid Development Kit*|*nanoMODUL-164* program group. Which icon to choose depends on the serial port used to connect to the target system.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the icons *FlashTools Max (COM1)* or *FlashTools Max (COM2)*.

The microcontroller firmware tries to automatically adjust to the baud rate entered in the command line within the properties of the link. However it may occur that the predefined baud rate can not be reached. This results in FlashTools omitting the loading procedure and never showing the main menu. In this case, try incrementally lower baud rates to establish a connection. Before further connection attempts be sure to leave FlashTools by pressing function key <F1> and then to reset the target hardware and force it into Bootstrap mode as described in section 2.2.

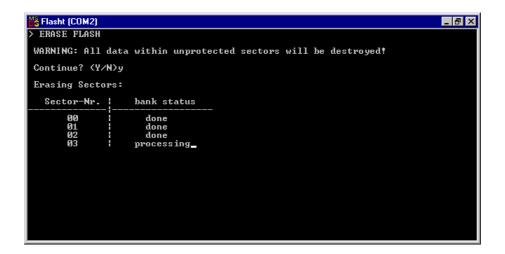
• If properly invoked, FashTools will load to the RAM of the nanoMODUL-164. The active loading process is indicated by a rotating cursor bar.

```
FLASH-TERMINAL U1.43
(C) PHYTEC Meßtechnik GmbH 1997
USING COM2: AT 9600 BAUD
Loading Flash-Utilities: /_
```

• After FlashTools has loaded, the main menu appears on the screen.

```
Flasht (COM2)

FLASH-Utility for 80C164 with 16-Bit Flash U 2.5


FLASH-Devices: AMD 29F200B
Flash-Area: 90090H-07FFFH
Software-Protected-Areas #1: none
#3: none
#3: none
No-Access-Areas #1: 90EF00H-00FFFH
#2: none
#3: none
(1) Flash status information
(2) Erase entire Flash-Area
(3) Erase partial Flash-Area
(4) Load INTE-Hexfile
(5) Software-Reset
(6) Run from address
(7) Erase, Load and Software-Reset

> Command:
```

At the FlashTools main menu you will see commands for the following:

Flash Status information shows sector and address ranges in Flash memory:

Erase entire Flash-area enables erasure of the unprotected sectors of the whole user addressable Flash:

Erase partial Flash-area enables erasure of user specified sectors of memory by entering a memory address range:

Load INTEL-hexfile downloads specified hexfiles to the target hardware:

```
Input File: c:\rapidkit\nm164\demos\blinky\blinky.h86

Press <F2> to download a HEX-file when using FLASHT

Waiting for INTEL-Hex File...

>>:0200000400000FA
>>:020004000SB002F
>>:100006000FEB0EEAE006E007BBFA08611870F0464F
>>:100006000FEB0EEAE006E007BBFA08611870F0464F
>>:100006000BEEE08611870F046F05726F4F0493852D6
>>:04003600BFEF008611870F046F05726F4F0493852D6
>>:04003600BFF0DE74E
>>:10004A0000A8_
```

Software-Reset forces a software-reset of the microcontroller, resulting in execution of the Flash memory content:

```
Flash (COM2)

FLASH-Utility for 80C164 with 16-Bit Flash U 2.5

(c) 1997, PHYTEC Meßtechnik GmbH, D-55129 Mainz

Flash-Devices:
AMD 29F200B
90000H-07FFFH
Software-Protected-Areas #1: none
#2: none
#3: none
No-Access-Areas #1: 00EF00H-00FFFH
#2: none
#3: none
(1) Flash status information
(2) Erase entire Flash-Area
(4) Load INTEL-Hexfile
(5) Software-Reset
(6) Run from address
(7) Erase, Load and Software-Reset

> Command:5

Executing Software-Reset..
```

Run from address allows start of execution at a user specified address:

Erase, Load and Software-Reset results in automatic erasure of unprotected areas of the Flash, loading of a hexfile and a subsequent software-reset that executes the contents of the Flash memory.

Return to the main FlashTools menu to run an example program as described in the next section.

2.3.2.1 "Hello"

The 'Hello' example downloads a program to the Flash that, when executed, initializes the serial port to 9600 baud and sends a character string from the target hardware back to the host-PC. The character string can be viewed with a terminal emulation program.

- From the FlashTools main menu enter '2' to choose the *Erase* entire Flash-Area command and select 'Y' to confirm erasure of unprotected sectors of Flash memory. You can see the Flash sectors being erased in the FlashTools window. When all sectors are erased, the main menu reappears.
- Enter '4' to choose the *Load INTEL-hexfile* command and press function key < F2 > to specify the input file for download.
- The hexfile has already been installed on your hard disk during the installation procedure. Enter the correct drive and path to the nanoMODUL-164 Demo file (default location *C:\PHYBasic\nM164\Demos\Keil\Hello\hello.h86*). After pressing the <Return> key the download starts immediately and you can watch the process of the download as the code spills across the FlashTools window as it transmits via the RS-232 connection from the host to the on-board Flash:

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the Demo file at the default location *C:\PHYBasic\nM164\Demos\Keil\Hello\HelloMx\hello.h86*).

```
Input File: c:\rapidkit\nm164\demos\hello\hello.h86

Press <F2> to download a HEX-file when using FLASHT

Waiting for INTEL-Hex File...

>>:020000040000FA
>>:10005400202063686172203D2025303262580A00F6
>>:0E0064001A48656C66F20576F7266640A004E
>>:1000100076E2000466E3FF7FE6B880G0CC
>>:1000100076E2000466E3FF7FFE6B880GCC
>>:10002000E6B70000E65A4000E6D81180E6F8200066
>>:10003000DA004E06E6F86400E6F90000DA00500245
>>:10004000DA0_
```

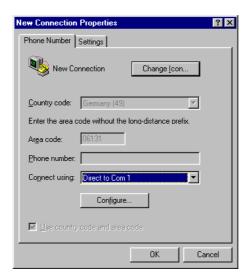
• At the end of the download procedure the main menu reappears and the downloaded code can be executed.

If the selected Flash bank into which you wish to download code was not empty (i.e. erased), the following warning dialog box will appear: "!!! Target address location not empty: xxxx" (where xxxx is the erroneous address). If this occurs, press the <Space> bar to return to the main menu (this may take some time) and select the (2) Erase entire Flash-Area from the main menu to erase all unprotected sectors of the Flash. Then repeat the download procedure.

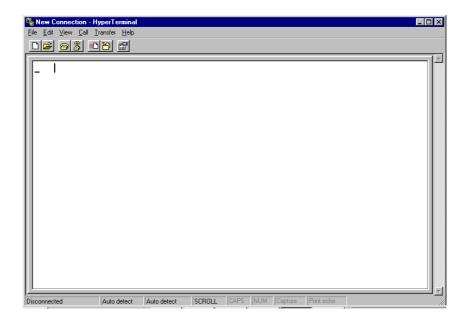
• From within the main menu press function key $\langle F1 \rangle$. Select 'Y' to exit the FlashTools.

Monitoring the execution of the QuickStart demo requires use of a terminal program, such as the HyperTerminal program included within Windows.

• Start the HyperTerminal program within the *Windows Programs*/*Accessories* bar:


• The HyperTerminal main window will now appear:

- Double-click on the *HyperTerminal* icon 'Hyperterm' to create a new HyperTerminal session.
- The Connection Description window will now appear. Enter "COM1 Direct" in the "Name" combobox (be sure to specify the correct COM parameter for your system).


- Next press the *Ok* button. This creates a new HyperTerminal session named "COM1 Direct" and advances you to the next HyperTerminal window.
- The "New Connections Properties" window will now appear. Specify *Direct to COM1* under the *Connect Using* combobox (be sure to indicate the correct COM setting for your system).

• Select the *Configure* button in the "New Connections Properties" window to advance to the next window (COM1 Properties). Then set the following COM parameters: Bits per second = 9600; Data bits = 8; Parity = *None*; Stop Bits = 1; Flow Control = *None*.

• Selecting *OK* advances you to the "COM1 Direct – HyperTerminal" monitoring window. Notice the connection status report in the bottom lower corner of the window.

- Resetting the Development Board (at S1) will execute the *hello.h86* file loaded into the Flash.
- Successful execution will send the character string "*Hello World*" from the target hardware to the HyperTerminal window.
- Click the disconnect icon [3]

If no output appears in the HyperTerminal window check the power supply, the COM parameters and the RS-232 connection.

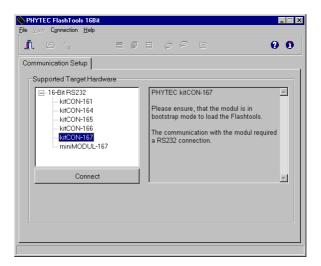
The demo application within the file *hello.h86* initializes the serial port of your nanoMODUL-164 to 9600 baud. The initialization values are based on the assumption that the microcontroller runs at a 20 MHz internal clock frequency. Please note that the nanoMODUL-164 is populated with an oscillator with a frequency of just 5 MHz. An internal PLL (Phase Locked Loop) device renders an internal 20 MHz clock frequency. If your nanoMODUL-164 is equipped with an oscillator with a different frequency value, the demo application might transmit using another baud rate. This may lead to incoherent characters appearing in the HyperTerminal window following execution of code. Additional information can be found in the *readme.txt* file in the *Hello* project directory.

2.3.2.2 "Blinky"

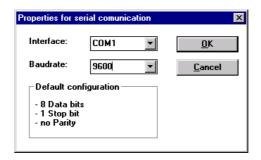
The 'Blinky' example sends a program to the Flash that, when executed, manipulates the single user SMD-LED D1 on the Development Board that is mounted near the Boot (S2) switch. This second example program provides a review of the FlashTools download procedure:

- Ensure that the target hardware is properly connected to the host-PC and a power supply
- Reset the target hardware and force it into Bootstrap mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board and then releasing first the Reset (S1) and, several seconds later, releasing the Boot (S2) switch
- Start FlashTools for DOS from within the *PHYTEC Rapid Development Kit*/*nanoMODUL-164* program group. For connection to the target hardware, remember to select the icon corresponding to the correct serial port on your host-PC
- After the loading process has finished and the main FlashTools menu appears, enter '2' to choose the *Erase entire Flash-Area* command. Select 'Y' to confirm erasure of unprotected sectors of Flash memory.

- Once the main menu reappears on the screen, enter '4' to choose the *Load INTEL-hexfile* command and press function key $\langle F2 \rangle$ to specify the **blinky.h86** hex input file.
- The 'Blinky' hexfile has also already been installed on your hard disk during the installation procedure. Enter the correct drive and path to the demo file and press <Enter> (default location C:\PHYBasic\nM164\Demos\Keil\Blinky\blinky.h86).


If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the Demo file at the default location *C:\PHYBasic\nM164\Demos\Keil\Blinky\BlinkyMx\BlinkyMx.h86*).

- Returning to the main menu, enter '5' to choose the *Software-Reset* command. This will render a software-reset to the target system and start execution of the download program.
- Successful execution of the program will flash the LED with equal on and off durations.
- Press the function key <F1> to exit FlashTools.

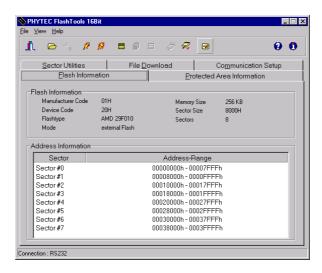

You have now successfully downloaded and executed two preexisting example programs in *.h86-file format.

2.3.3 Downloading Example Code with FlashTools for Windows

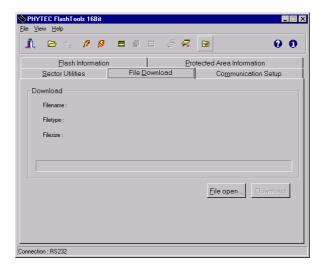
- Start FlashTools for Windows by double-clicking on the FlashTools for Windows icon or by selecting *FlashTools for Windows* from within the *Programs/PHYTEC FlashTools for Windows* program group.
- The Connect tab of the FlashTools for Windows Worksheet window will now appear.
- Double click on 16-Bit RS232



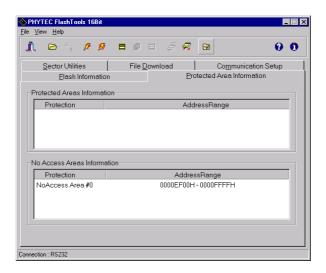
• Select the correct module from the list and press the *Connect* button.

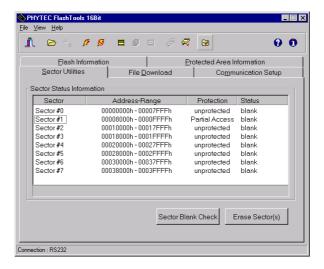

- Select the correct serial port for your host-PC and a 9600 baudrate.
- Click the *OK* button to load the module based part of the Flashtools to the target hardware.

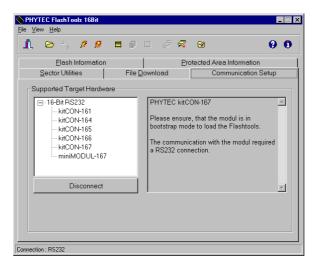
The microcontroller tries to automatically adjust to the baud rate selected within the baud rate tab. However it may occur that the selected baud rate can not be reached. This results in a connection error. In this case, try other baud rates to establish a connection. Before further connection attempts, be sure to reset the target hardware and render it into Bootstrap mode as described in section 2.2.



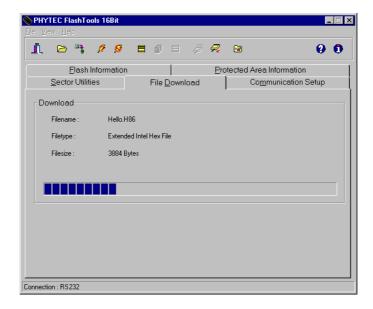
 After the data transfer you will see FlashTools for Windows Worksheet window with the following tabs.


Flash Information shows sector and address ranges in Flash-Memory:


File Download downloads specified hexfiles to the target hardware:


Protected Areas Information shows protected areas of Flash-Memory:

Sector Utilities allow erasure of individual sectors of Flash-Memory:


Communication Setup provides you with the possibility to disconnect the target and reconnect with an equal one. Programming of several targets is possible for you thereby.

2.3.3.1 "Hello"

The "Hello" example downloads a program to the Flash that, when executed, performs an automatic baud rate detection and sends a character string from the target hardware back to the host-PC. The character string can be viewed with a Terminal Emulation program.

- Choose the *Sector Utilities* tab, highlight *Sector #0* and click on the *Erase Sector(s)* button. You can see the Flash sector(s) being erased at the bottom left hand of the window. When the desired sectors are erased, the connection properties description returns to the lower left corner of the window.
- Choose the *File Download* tab, and click on the *File Open*... button.
- The hexfile has already been installed to your hard-drive during the installation procedure. Type in the correct drive and path to the nanoMODUL-164 Demo directory (default location *C:\PHYBasic\nM164\Demos\Keil\Hello\hello.h86*) and click *Open*.
- Click on the *Download* button. You can watch the status of the download of the *hello.h86* into external Flash-Memory in the Download window.

• At the end of the download, a sector by sector status check of the Flash-Memory can be viewed in the left-hand corner of the FlashTools for Windows Worksheet window. Wait until the status check finishes before returning to work with the board. Once the status check is complete, the downloaded code can be executed.

If the selected Flash bank into which you wish to download code is not empty (i.e. erased), a warning dialog box will appear, indicating "Location not empty! Please erase location and try again." In this event, select the *Sector Erase* tab from the FlashTools for Windows worksheet, highlight Sector #0 and erase the sector. Then repeat the download procedure.

• Returning to the *Communication Setup* tab, click on the *Disconnect* button and exit the Flashtools.

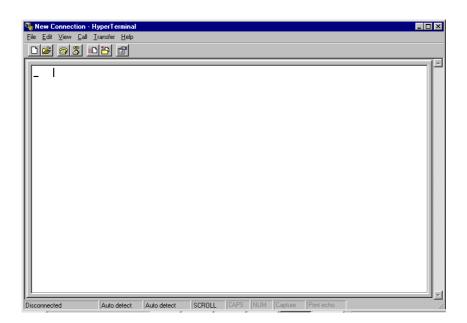
Monitoring the execution of the QuickStart demo requires use of a terminal program, such as the HyperTerminal program included within Windows.

- Start the HyperTerminal program within the *Windows Programs/Accessories* bar.
- The HyperTerminal main window will now appear:



• Double-click on the *HyperTerminal* icon 'Hyperterm' to create a new HyperTerminal session.

• The Connection Description window will now appear. Enter "COM1 Direct" in the "Name" combobox (be sure to specify the correct COM parameter for your system).


- Next press the *Ok* button. This creates a new HyperTerminal session named "COM1 Direct" and advances you to the next HyperTerminal window.
- The "New Connections Properties" window will now appear. Specify *Direct to COM1* under the *Connect Using* combobox (be sure to indicate the correct COM setting for your system).

• Select the *Configure* button in the "New Connections Properties" window to advance to the next window (COM1 Properties). Then set the following COM parameters: Bits per second = 9600; Data bits = 8; Parity = *None*; Stop Bits = 1; Flow Control = *None*.

• Selecting *OK* advances you to the "COM1 Direct – HyperTerminal" monitoring window. Notice the connection status report in the bottom lower corner of the window.

• Resetting the Development Board (at S1) will execute the *hello.h86* file loaded into the Flash.

- Successful execution will send the character string "*Hello World*" from the target hardware to the HyperTerminal window.
- Click the disconnect icon

If no output appears in the HyperTerminal window check the power supply, the COM parameters and the RS-232 connection.

The demo application within the file *hello.h86* initializes the serial port of your nanoMODUL-164 to 9600 baud. The initialization values are based on the assumption that the microcontroller runs at a 20 MHz internal clock frequency. Please note that the nanoMODUL-164 is populated with an oscillator with a frequency of just 5 MHz. An internal PLL (Phase Locked Loop) device renders an internal 20 MHz clock frequency. If your nanoMODUL-164 is equipped with an oscillator with a different frequency value, the demo application might transmit using another baud rate. This may lead to incoherent characters appearing in the HyperTerminal window following execution of code. Additional information can be found in the *readme.txt* file in the *Hello* project directory.

2.3.3.2 "Blinky"

The "Blinky" example sends a program to the Flash that, when executed, manipulates the single user SMD-LED D3 on the Development Board which is mounted near the Boot (S2) switch. This second example program provides a review of the FlashTools for Windows download procedure:

- Ensure that the target hardware is properly connected to the host-PC and a power supply
- Render the target hardware into Flash Programming Mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board and then releasing first the Reset (S1) and, two to three seconds later, release the Boot (S2) switch
- Start FlashTools for Windows
- At the Serial Interface tab of the FlashTools for Windows Worksheet, specify the proper serial port and transmission speed for communication between host-PC and target hardware and click the *Load Flashtools* button to transfer the modul based part of the FlashTools for Windows to the target hardware.
- Select the right protocol (default RS232) for further use of the FlashTools for Windows.
- Returning to the FlashTools for Windows Worksheet, choose the *Sectors Utilities* tab, highlight *Sector #0* in the *Sectors Erase* section of the tab and click on the *Erase Sector(s)* button to erase this memory sector
- Wait until the status check in the lower left corner of the FlashTools for Windows Worksheet finishes, returning the connection properties description to the lower left corner of the window
- Next choose the *File Download* tab and click on the *File Open* button
- Type the complete pathway and name of the file you wish to download *C:\PHYBasic\nM164\Demos\Keil\Blinky\blinky.h86* directory (default location)

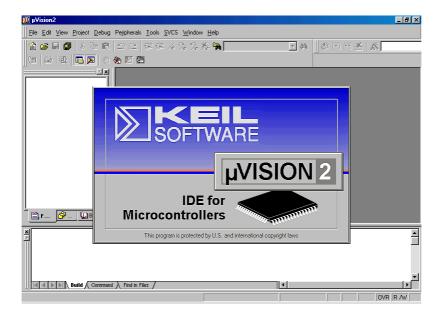
- Click on the *Download* button and view the download procedure to the board in the status window
- Returning to the *Communication* tab, click on the *Disconnect* button
- Press the Reset button (S1) on the Development Board to reset the target hardware and to start execution of the downloaded software
- Successful execution of the program will flash the LED with equal on and off durations

You have now successfully downloaded and executed two preexisting example programs in *.h86-file format.

3 Getting More Involved

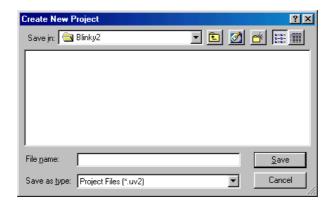
What you will learn with this example:

- how to start the µVision2 tool chain
- how to configure the $\mu Vision2$ IDE (Integrated Development Environment)
- how to modify the source code from our examples, create a new project and build and download an output *.h86-file to the target hardware

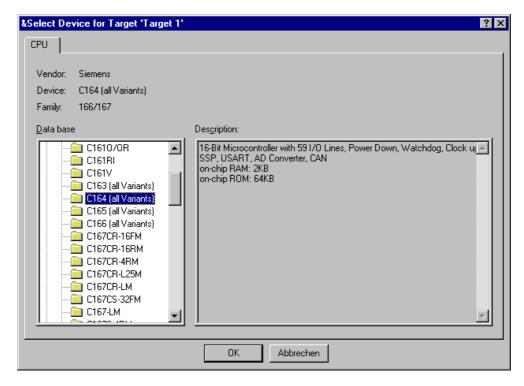

3.1 Starting the µVision2 Tool Chain

The μ Vision2 evaluation software development tool chain should have been installed during the install procedure as described in section 2.1.

You can also manually install μ Vision2 by executing *setup.exe* from within the |Software|Keil|Ek166 directory of your PHYTEC Spectrum CD.


Start the tool chain by selecting $\mu Vision2$ from within the *Programs* program group.

After you start $\mu Vision2$, the window shown below appears. From this window you can create projects, edit files, configure tools, assemble, link and start the debugger. Other 3^{rd} party tools such as emulators can also be started from here.

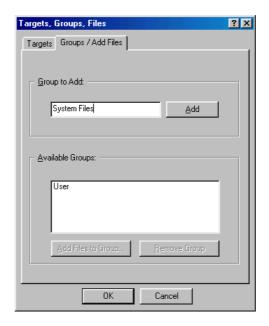


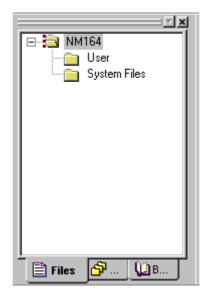
3.2 Creating a New Project and Adding an Existing Source File

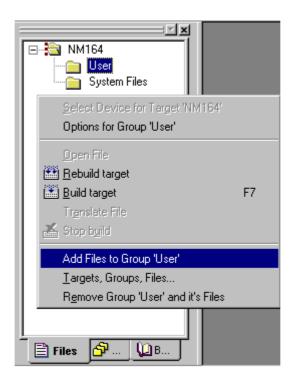
- Open the Project menu and choose New Project. This opens a standard Windows dialog that asks you for the new project file name.
- Change to the project directory created by the installation procedure (default location
 - $C: \PHYBasic \land nM164 \land Demos \land Keil \land Blinky2).$

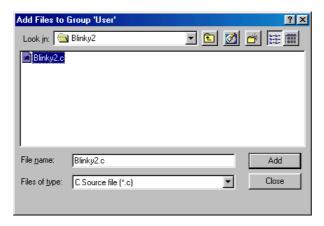
- In the combobox underneath 'File name', enter the file name of the project you are creating. For this tutorial, enter the name *Blinky2* and press *Save*.
- Now use from the menu *Project/Select Device for Target* and double click on *Siemens* as manufacturer for the CPU. The nanoMODUL-164 is equipped with a C164 CPU. Choose this controller type from the list as shown below. This selection sets necessary tool options for the C164 device and simplifies in this way the tool configuration

Press the OK button

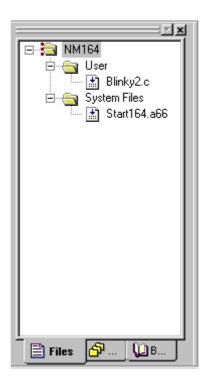

• To give the target of our project a name select the default *Target 1* in the project window and click on it. Change the name into NM164 and press return.


- Select the file group *Source Group 1* in the Project Window Files page and click on it to change the name into *User*.
- Click with the right mouse key in the Project Window to open a local menu. Choose the options *Targets, Groups, Files...*.


• Select the tab **Groups / Add Files** and type the new group name *System Files* in the **Group to Add:** section.

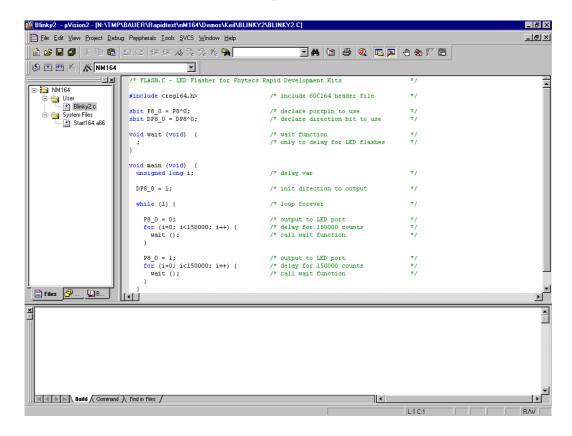

- Click on **Add** and then on **OK**.
- Your project file structure should now look like this:

• Now it's time to add some source code to our project. To do so, click with the right mouse key on the *User* group to open a local menu. The option **Add Files to Group 'User'** opens the standard files dialog.



• Select the file *Blinky2.c*.

- Choosing *Add* adds the Blinky2.c file to your current project window.
- Close the window.


- Now right click on group *System Files* and add the File **Start164.a66**. (You have to change the Filetype to "ASM source file *.a" see this file).
- Your project window should now look like this:

At this point you have created a project called *blinky2.uv2* and added an existing C source file called *blinky2.c* and an existing assembler file called *start164.a66*. Next you modify the C source before building your project. This includes compiling, linking, locating and creating the hexfile.

3.3 Modifying the Source Code

• Double click on *blinky2.c* to open it in the source code editor.

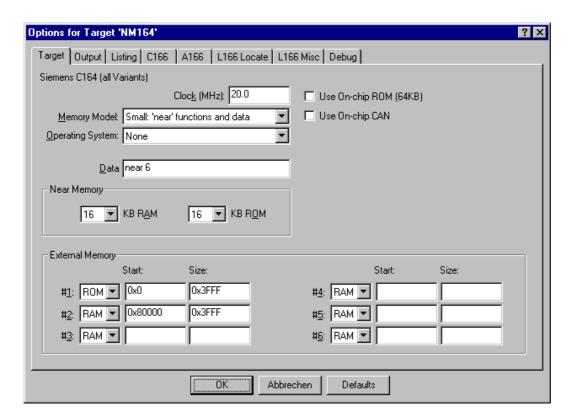
• Locate the following code section. Modify the section shown below (the values shown in bold and italic) from the original (150,000) counts to the indicated values:

This will change the on/off ratio of the *blinky* program.

3.4 Saving the Modifications

• Save the modified file by choosing File/Save or by clicking the floppy disk icon \Box .

Note that the icon is active as soon as you modify the file.

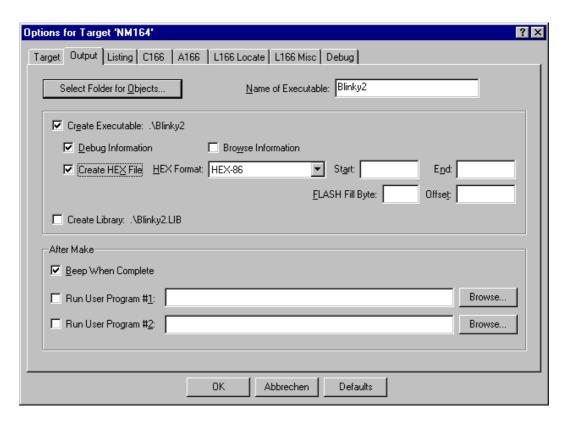

3.5 Setting Options for Target

Keil includes a Make utility that can control compiling and linking source files in several programming languages. Before using the Make utility, macroassembler, C compiler or linker you must configure the corresponding options. Most of the options are set by specifying the device for the project. Only the external memory and output options must be set.

Enter the changes as indicated below and leave all other options set to their default values. $\mu Vision2$ allows you to set various options with mouse clicks and these are all saved in your project file.

To configure the Target:

• Open the *Project/Options for Target 'NM164'* menu and type the settings for the External Memory as shown below. Make sure that #1 is set to ROM.


If you have a nanoModul-164 with 1 MB SRAM or 1 MB use the following settings for the External Memory:

#1 0x0 - 0x3FFF

#2 0x100000 - 0x3FFF

To configure the Output options:

• Select the Output tab and activate the *Create HEX-File* option. With this option a INTEL *.HEX file will be created for download.

• Click on OK

3.6 Building the Project

You are now ready to run the compiler and linker using the Make utility.

- Click on the *Build Target* icon from the μVision2 tool-bar press F7.
- If the program specified (*blinky2.c*) contains any errors, they will be shown in an error dialog box on the screen.
- If there are no errors, the code is assembled and linked and the executable code is ready to be downloaded to the board. This is shown in the Output Window, which indicates "Blinky2" 0 Errors, 0 Warnings. The code to be downloaded to the board will be the name of the project with .h86 as file name extension (in this case blinky2.h86).

```
Build target 'NM164'
compiling Blinky2.c...
assembling Start164.a66...
linking...
creating hex file from "Blinky2"...
"Blinky2" - 0 Error(s), 0 Warning(s).
```

• If a list of errors appears, use the editor to correct them in the source code and save the file and repeat this section.

3.7 Downloading the Output File

3.7.1 Downloading with FlashTools for DOS

- Exit Keil μVision.
- Reset the target hardware and force it into Flash programming mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board, releasing first the Reset (S1) and then the Boot (S2) switch
- Start FlashTools for DOS for your nanoMODUL-164 by selecting either the *FlashTools (COM1)* or *FlashTools (COM2)* icon within the *PHYTEC Rapid Development Kit/nanoMODUL-164* program group. Which icon to choose depends on the serial port used to connect to the target system.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the icon's *FlashTools Max (COM1)* or *FlashTools Max (COM2)*.

• FlashTools will be loaded to the RAM of the nanoMODUL-164. The active loading process is indicated by a rotating cursor bar.

• After the loading process has finished the main menu appears on the screen.

```
Flasht (COM2)

FLASH-Utility for 80C164 with 16-Bit Flash U 2.5

(c) 1997, PHYTEC Meßtechnik GmbH, D-55129 Mainz

Flash-Devices: AMD 29F200B

Flash-Area: 90000H-07FFFH
Software-Protected-Areas #1: none
#2: none
#3: none
No-Access-Areas #1: 00EF00H-00FFFFH
#2: none
#3: none
(1) Flash status information
(2) Erase entire Flash-Area
(3) Erase partial Flash-Area
(4) Load INTEL-Hexfile
(5) Software-Reset
(6) Run from address
(7) Erase, Load and Software-Reset
```

- Enter '2' to choose the *Erase entire Flash-Area* command and enter 'Y' to confirm deletion of all unprotected sectors of Flash memory. You can see the Flash sectors being erased in the FlashTool window. When all sectors are erased, the main menu reappears.
- Enter '4' to choose the *Load INTEL-hexfile* command and press function key <F2> to specify the input file.
- The hexfile for download was created during the *Make* process and is located in the directory of the *Blinky2* project. Enter the correct drive and path to the *Blinky2* hexfile (default location *C:\PHYBasic\nM164\Demos\Keil\Blinky2\blinky2\blinky2.h86*) The download immediately starts. You can watch the process of the download in the FlashTools window as code transmits via the RS-232 connection from the host-PC to the on-board Flash:

```
Input File: c:\rapidkit\products\modul\nm164\demos\blinky2\blinky2.h86

Press <F2> to download a HEX-file when using FLASHT

Waiting for INTEL-Hex File...

>:0200000400005002F

>:02000400005002F

>:100006000FEB0EEAE006E007BBFA08611870F0464F

>:10001600F05726F4E86E38538DF70FEAE006E0074E

>:10002600BBEE08611870F046F05726F4F8243851F4

>:040036008DF70DE74E

>:10003A000A55A05A0863F1D1A8600121A8900FF2D

>:10003A000A55A05A0863F1D1A8600121A8900FF2D

>:10003A000A55A05A0863F1D1A8600121A8900FF2D

>:10003A000A55A05A0863F1D1A8600121B50D048

>:10005A005E022000E668000FCB54ABSB55E6F00090D5

>:10006A00E6F90000E6F80000F01870192D29E005FD

>:10006A00C6F90000E6F80000F01870192D29E005FD

>:10008A000APF2DFF0F0347C330EF306F300FDE015DD

>:10009A0004C549150685B8853084128213DF30DE751

>:1000A00DC099838DC44B9A30831184076F300C
```

If the selected Flash bank into which you wish to download code was not empty (i.e. erased), a warning dialog box will appear, indicating "!!! Target address location not empty: xxxx" where xxxx is the erroneous address. In this case, press the <Space> bar to return to the main menu (this may take some time) and select the (2) Erase entire Flash-Area from the main menu to erase all unprotected sectors of the Flash memory. Then repeat the download procedure.

- After the download is finished, FlashTools will return to the main menu automatically.
- Press function key <F1> and select 'Y' to confirm that you wish to exit FlashTools.
- Press the Reset button (S1) on the Development Board
- If the modified hexfile properly downloads and executes, the LED should now flash in a different mode with different on and off durations.

You have now modified source code, recompiled the code, created a modified download hexfile, and successfully executed this modified code.

3.7.2 Downloading with FlashTools for Windows

- Exit Keil μVision2.
- Render the target hardware and force it into Flash programming mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board, releasing first the Reset (S1) and then the Boot (S2) switch
- Start FlashTools for Windows
- At the Serial Interface tab of the FlashTools for Windows Worksheet, specify the proper serial port and transmission speed for communication between host-PC and target hardware and click the *Load Flashtools* button to transfer the modul based part of the FlashTools for Windows to the target hardware.
- Select the right protocol (default RS232) for further use of the FlashTools for Windows.
- Returning to the FlashTools for Windows Worksheet, choose the *Sectors Utilities* tab, highlight *Sector #0* in the *Sectors Erase* section of the tab and click on the *Erase Sector(s)* button to erase this memory sector
- Wait until the status check in the lower left corner of the FlashTools for Windows Worksheet finishes, returning the connection properties description to the lower left corner of the window
- Next choose the *File Download* tab and click on the *File Open* button
- Type the complete pathway and name of the file you wish to download
 - C:\PHYBasic\mM164\Demos\Keil\Blinky2\blinky2.h86 directory (default location)
- Click on the *Download* button and view the download procedure to the board in the status window
- Returning to the *Communication* tab, click on the *Disconnect* button
- Press the Reset button (S1) on the Development Board.

• If the modified hexfile properly downloads and executes, the LED should now flash in a different mode with different on and off durations.

You have now modified source code, recompiled the code, created a modified download hexfile, and successfully executed this modified code.

3.8 "Hello"

A return to the "Hello" program allows a review of how to modify source code, create and build a new project, and download the resulting output file from the host-PC to the target hardware. For detailed commentary on each step, described below in concise form, refer back to the "Blinky" example starting at section 3.2.

3.8.1 Creating a New Project

- Start the Keil μVision2 environment and close all projects that might be open.
- Open the Project menu and create a new project called *hello2.uv2* within the existing project directory
 C:\PHYBasic\nM164\Demos\Keil\Hello2
 (default location) on your hard drive.
- Add *hello2.c* and *start164.a66* from within the project directory to the project *hello2.uv2*.
- Save the project

At this point you have created a project called *hello2.uv2* consisting of a C source file called *hello2.c* and an assembler file called *start164.a66*.

3.8.2 Modifying the Example Source

- Double click the file *hello2.c* from within the project window.
- Use the editor to modify the *printf* command:

```
printf ("\x1AHello World\n")

to

printf ("\x1APHYTEC... Stick It In!\n")
```

- Save the modified file under the same name *hello2.c*.
- Close the editor window.

3.8.3 Setting Options for Target

• Modify the default options for the Target by defining the following external memory spaces:

ROM: Start: 0x0 Size: 0x3FFF RAM: Start: 0x80000 Size: 0x3FFF

If you have a nanoModul-164 with 1 MB SRAM or 1 MB use the following external memory spaces:

ROM 0x0 - 0x3FFF RAM 0x100000 - 0x3FFF

• Modify the default options for the output file by selecting the *Create HEX-File* checkbox in the *Project/Options for Target..../Output* tab. This will automatically create an extended hexfile for download to the nanoMODUL-164 after compiling.

3.8.4 Building the New Project

- Build the project
- If any source file of the project contains any errors, they will be shown in an error dialog box on the screen. Use the editor to correct the error(s) in the source code and save the file and repeat this section.
- If there are no errors, the code is assembled and linked and the executable code is ready to be downloaded to the board.

3.8.5 Downloading the Output File

3.8.5.1 Downloading with FlashTools for DOS

- Exit Keil μVision.
- Reset the target hardware to render it in Flash Programming mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board and then releasing first the Reset (S1) and, two or three seconds later, release the Boot (S2) switch
- Start FlashTools for DOS for your nanoMODUL-164 by selecting either the *FlashTools (COM1)* or *FlashTools (COM2)* icon within the *PHYTEC Rapid Development Kit/nanoMODUL-164* program group. Choose the icon that corresponds to the serial port used on your host-PC to connect to the target system.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the icon's *FlashTools Max (COM1)* or *FlashTools Max (COM2)*.

- FlashTools will load to the RAM of the nanoMODUL-164. The active loading process is indicated by a rotating cursor bar.
- After FlashTools has loaded, the main FlashTools menu appears on the screen.
- Enter '2' to choose the *Erase entire Flash-Area* command and enter 'Y' to confirm erasure of all unprotected sectors of Flash memory. You can see the Flash sectors being erased in the FlashTools window. When the all sectors are erased, the main FlashTools menu reappears.
- Enter '4' to choose the *Load INTEL-hexfile* command and press the function key <F2> to specify the input file.
- The hexfile for download was created during the Make process and is located in the directory of the *Hello2* project. Enter the correct drive and path to the *Hello2* hexfile (default location *C:\PHYBasic\nM164\Demos\Keil\Hello2\Hello2\Hello2.h86*) and press <Enter>. The download immediately starts. You can watch the

download in the FlashTools window as code transmits via the RS-232 connection from the host-PC to the on-board Flash.

• At the end of the download the main menu reappears and the downloaded code can be executed.

If the selected Flash bank into which you wish to download code was not empty (i.e. erased), a warning dialog box will appear, indicating "!!! Target address location not empty: xxxx" where xxxx is the erroneous address. In this case, press the <Space> bar to return to the main menu (this may take some time) and select the (2) Erase entire Flash-Area from the main menu to erase all unprotected sectors of the Flash memory. Then repeat the download procedure.

- After the download is finished, FlashTools will return to the main menu automatically
- Press function key <F1> and select 'Y' to confirm that you wish to exit FlashTools

3.8.5.2 Downloading with Flash Tools for Windows

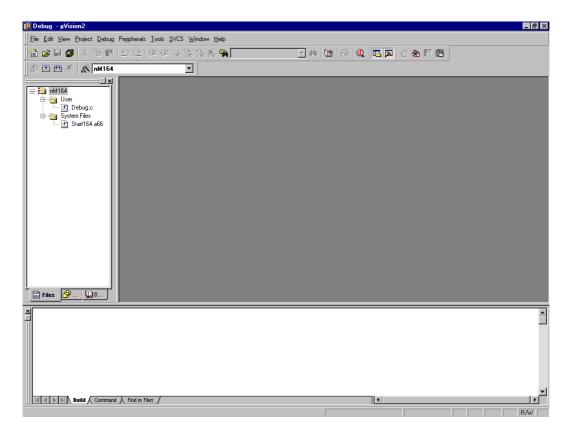
- Exit Keil μVision2.
- Reset the target hardware to render it in Flash Programming mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board and then releasing first the Reset (S1) and, two or three seconds later, release the Boot (S2) switch
- Start FlashTools for Windows
- At the Serial Interface tab of the FlashTools for Windows Worksheet, specify the proper serial port and transmission speed for communication between host-PC and target hardware and click the *Load Flashtools* button to transfer the modul based part of the FlashTools for Windows to the target hardware.
- Select the right protocol (default RS232) for further use of the FlashTools for Windows.
- Returning to the FlashTools for Windows Worksheet, choose the *Sectors Utilities* tab, highlight *Sector #0* in the *Sectors Erase* section of the tab and click on the *Erase Sector(s)* button to erase this memory sector
- Wait until the status check in the lower left corner of the FlashTools for Windows Worksheet finishes, returning the connection properties description to the lower left corner of the window
- Next choose the *File Download* tab and click on the *File Open* button
- Type the complete pathway and name of the file you wish to download *C:\PHYBasic\nM164\Demos\Keil\Hello2\Hello2.h86* directory (default location)
- Click on the *Download* button and view the download procedure to the board in the status window
- Returning to the *Communication* tab, click on the *Disconnect* button
- Exit the FlashTools for Windows.

3.8.6 Starting the Terminal Emulation Program

- Start the HyperTerminal and connect it to the target hardware using the following COM parameters: Bits per second = 9600; Data bits = 8; Parity = None; Stop Bits = 1; Flow Control = None
- Resetting the Development Board (at S1) will execute the *hello2.h86* file loaded into the Flash.
- Successful execution will send the modified character string 'PHYTEC...Stick it in!' to the HyperTerminal window.
- Click the Disconnection icon [3]
- Close the HyperTerminal program

You have now modified source code, recompiled the code, created a modified download hexfile, and successfully executed this modified code.

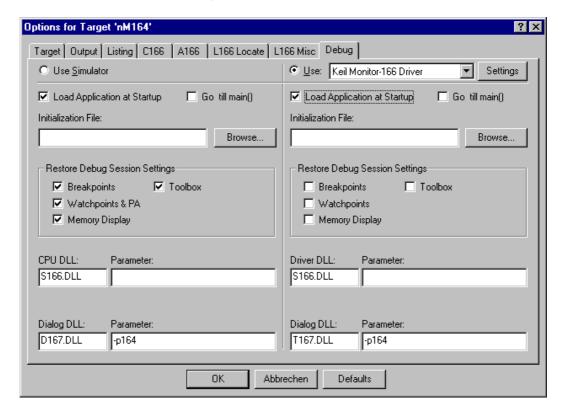
4 Debugging


You can use μ Vision2 Debugger to test the applications you develop using the C166 compiler and A166 macro assembler. The μ Vision2 Debugger offers two operating modes that are selected in the *Project/Options for Target/Debug* dialog:

- Use Simulator allows to configure the µVision2 Debugger as software-only product that simulates most features of the 166 / ST10 microcontroller family without actually having target hardware. You can test and debug your embedded application before the hardware is ready. µVision2 simulates a wide variety of peripherals including the serial port, external I/O, and timers. The peripheral set is selected when you select a CPU from the device database for your target.
- Use Advance GDI drivers, like Keil Monitor 166 interface. With the Advanced GDI interface you may connect the environment directly to emulators, OCDS debugging systems or the Keil Monitor program.

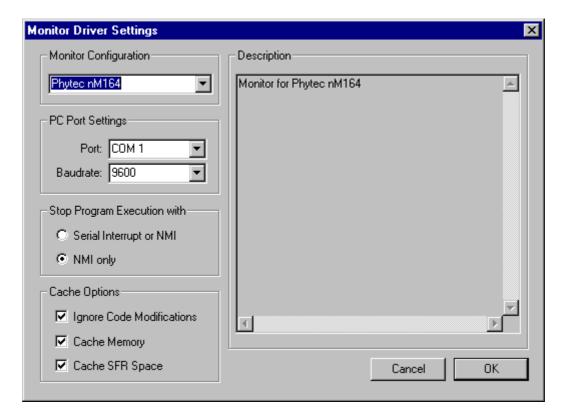
4.1 Loading the Example File

Within the default location *C:\PHYBasic\mM164\Demos\Keil\Debug* you will find an already build project called **Debug**.


• Close all possible open projects and open the project Debug.uv2 with the option *Project | open Project*.

4.2 Preparing the Debugger

This example utilises the Monitor interface, which automatically downloads a special Monitor kernel to the target hardware using the Bootstrap mode. Depending on the *Project/Options for Target 'nM164'/Debug* configuration, µVision2 will load the application program and run the startup code.


• Please select the check-boxes near: *Use: Keil Monitor –166 Driver* and *Load Aplication at Startup* in the *Project/Options for Target 'nM164'/Debug* dialog.

 Click on the Settings button in the upper right corner of the Options for Target 'nM164' window. • Select **Phytec nM164** from the **Monitor Configuration** listbox. A short description for the selected module is shown in the Description section on the right side.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB select **Phytec nM164 1MB** from the **Monitor Configuration** listbox.

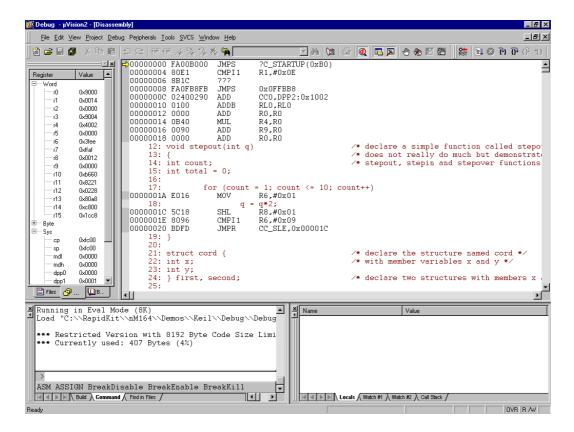
• Select the right COM-Port in the *PC Port Settings*.

- Click on OK
- Click on OK again.

4.3 Preparing the Target Hardware to communicate with the Debugger

- Ensure the target hardware is properly connected to the host-PC and a power supply
- Close Jumper JP3 (see *Figure 1* the shaded Jumper in the Jumperfield)
- Reset the target hardware and render it in Bootstrap mode by simultaneously pressing the Reset (S1) and Boot (S2) switches on the Development Board and then releasing first the Reset (S1) switch and, two or three seconds later, releasing the Boot (S2) switch.

Since the required microcontroller portion to communicate with the Keil Monitor 166 will be automatically downloaded using the Bootstrap mode there is no further preparation of the target system.


4.4 Starting the Debugger

- To start the $\mu Vision2$ debug environment, click on the debugger icon on the $\mu Vision2$ toolbar. You will see a blue bar growing from left to right at the button of your screen which indicates the download process of the Monitor- and Debug-Program.
- If a problem occurs during the data transfer you will see the following window:

• You could now restart your nM164 as described in section 4.3 and press **Try Again** or choose **Settings..** and make sure, that the right COM-port is selected.

• If the data transfer was successful choose *View/Dissassembly Window* and you will get a screen similar to this shown below. The project window changed to the register value view and the debug toolbar is shown. The lower right screen shows the Watch & Call Stack Window. (If you can't see one of these enable it in the **View** menu).

- You will see the source code on your screen in the Disassembly Window. Note that you will not see your C source code because the program starts at 00000H which is the reset vector with some assembler instructions. There is an assembler jump to a section of initialization code which then branches to your C main program. In this example you will see the JMPS instruction at 0000H and some parts of the C code.
- Click once on *StepInto!* You will see the assembly code of the initialization routine. DISWDT (disable watchdog) is the first instruction. EINIT (E8H) signals the end of the initialization routine of the CPU.

- To view the Output window, if not already visible, select *View/Output window*.
- At the Output window prompt, type in *g,main* and press Enter (notice the comma!) to run the CPU to the start of the 'main' function. The program counter will advance to 'main'. Note you can press the up arrow key to get the history of keys typed in the Output Window.
- You can single step using the *StepInto* icon. You are now ready to use the debugger window to step through code, set breakpoints, and issue the Go command to start program execution. You can examine special function registers, memory locations, and register values, etc.

4.5 Using the Keil µVision2 Debug Features

4.5.1 Breakpoints

- Click on a memory location such as line number 42 first.x++. A colored bar appears marking this position.
- You can click on *Run to Curser line* to reach this point or you can double-click and set a breakpoint. Set a breakpoint here with the double-click. The red mark on the left-hand of the selected line indicates the breakpoint.
- Click on RUN and the program will run and stop at the breakpoint.
- Double click on the breakpoint to remove it.

4.5.2 In Line Assembler

- Open the Watch & Call Stack Windows with a click on this icon: You could see the actual values of the variable *bigcount* in the Watch window.
- Double click in line 48 to set a breakpoint.
- Click on RUN a few times. This will continue the endless loop until program execution stops at the breakpoint. See how the value of bigcount changes with each RUN.

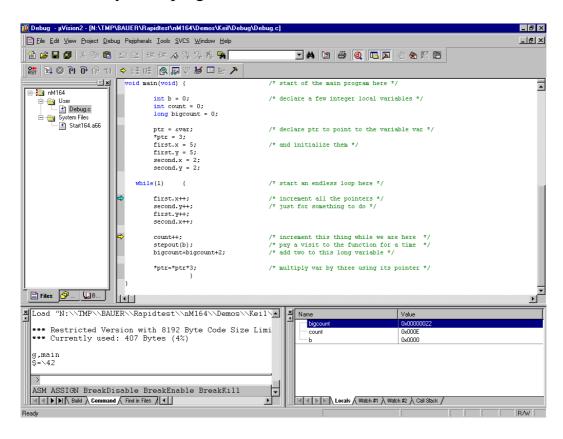
- Open the Inline Assembler window by selecting Debug|Inline Assembly...
- Move the Window with your mouse to your upper left hand so you can see your source code and the Watch Window.
- Type the address 0x64 in the *Current Assembly Address* field and press Enter on your keyboard. The assembly code at this address appears in the *Current Instruction* field. It is the addition of the variable *bigcount* with 2.
- Type the assembler instruction *ADD R10,#3* in the *Enter New Instruction* field and press Enter. You could see the change of your source code at address 0x64H.
- Close the *Inline Assembler* window.
- Click on RUN a few times and see that the value of *bigcount* now is added with 3 at each run.
- Remove the breakpoint at line 48 with a double mouse click.

4.6 Single Stepping

- The debugger uses "Step Into" to single step one instruction at a time. "Step Into" is also used to enter a function in the same fashion.
- "Step Over" p means to skip over a function that you are not interested in.
- "Step Out" is used to exit a function you are currently in. "Step Out" is very useful if you find yourself in a function you are not interested in and need to return quickly to your intended function.
- If the debugger gets stuck, execute a reset using the RESET icon located in next to the RUN icon. To isolate any problems from the target hardware board you could use the software simulator instead of the Monitor. You can also use the hardware reset button on the board.
- With the cursor on line 42 click on *StepInt*o until you enter the function stepout(). Note that you must click on *StepInto* 10 times to exit the *for* loop within the function stepout().

• Repeat the process using *StepOver* and you will not enter the function although it will be executed. Use the command \$=\42 within the Output Window to reposition the program counter to line 42 prior to further code execution. This command takes a line number preceded by a backslash to set the program counter. The *StepOver* feature is useful to skip function calls you are not interested in debugging.

Note that the *StepOut* button is grayed out and not available in Monitor mode. *StepOut* is available in the simulator and provides a quick escape from a function by executing the next *return* instruction.


• As you step through the program - the appropriate values in the *Regs* window will change colour as their values are updated. Most of the variables have been allocated to fast internal CPU registers by the µVision2 compiler.

4.6.1 Memory Window

- If the Memory Window is not already visible, activate it by selecting *View/Memory window* from the µVision2 tool bar.
- Type 0x5000 at the Address: field and press enter. The addresses displayed in the Memory Window should change starting at this address. This is the memory area for the variables of the project.
- Set a breakpoint at line 47 (count++). Note that as you press *Run*, the contents of the memory changes as the structure values are incremented at lines 42 through 45. Remove the breakpoint at line 47 with a double mouse click.
- Close the Memory Window.

4.6.2 Watch Window

- If not already visible view the Watch Window by selecting *View/Watch & Call Stack window* at the µVision2 menu.
- The Watch Window displays memory contents as specified by name. Structures can also be displayed.
- Click on the Files tab in the Project window and double click on the Debug.c filename to open it. Scroll down till you could see the yellow program counter arrow.

- Click on the Watch #1 tab at the bottom of the Watch Window
- To add variable symbols just click with the right mouse button on the symbol name in you source code and choose **Add "..." to Watch Window**. Add the variables *bigcount* and *first* to WatchWindow #1. Till *first* is a structure with the members *x* and *y* the Watch Window shows a + symbol left from *first*. Click on + to see the structure members *x* and *y*.

- Click in line 42 of the C source code (the line-counter is displayed at the bottom of the μVision2 window) and choose **Run to Cursor line** from the Debug Toolbar.
- Now choose *Step into* few times and look how the variable values are changing in the Watch Window.

4.7 Resetting Simulator and the nanoMODUL-164

- Debugger in Simulator mode: When you are using the simulator (i.e. no connection to target hardware), pressing the Reset CPU icon does not cause a running simulation to stop at the current point of execution. Reset CPU starts the application from the beginning address (0) again. Press the *Halt* button to halt a program under normal conditions.
- Debugger in Monitor mode: The Monitor runs in the target hardware. A Debugger reset sets the IPC to zero and performs other initialization routines if no user application was started. It is not as complete as a hardware-reset (pressing S1 on the Development Board). The best method of stopping a running application is to press the *Halt* button rather than the *Reset CPU* in Monitor mode. *Halt* tries to stop a running application when the 'Serial interrupt or NMI' option is enabled. If this option is not enabled, a dialog box is displayed in which you can select the next step. This has the advantage of detecting any 'infinite loop' in which your program might be stuck. With reset, you start again at address 0.
- The PHYTEC Development Board does not have a hardware NMI button. A NMI is the most reliable way to stop a running program. This is even more important when you are using the Bootstrap version of the Monitor because it is difficult to re-synchronize the Debugger and the kernel. For example, it is not possible for the Debugger to re-synchronize automatically by pressing the hardware-reset button (S1) if the monitor has been downloaded with the Bootstrap Loader. It must be restarted manually by restarting the Debugger.

5 Advanced User Information

This section provides advanced information for successful operation of the nanoMODUL-164 with the Keil tool chain.

5.1 FlashTools

5.1.1 FlashTools for DOS

Flash is a highly functional means of storing non-volatile data. One of its advantages is the possibility of on-board programming. Programming tools for the Flash device are delivered with the nanoMODUL-164 in the form a set of executable and binary files to run under DOS. This tools make use of the Bootstrap mode to transfer executable code to the nanoMODUL-164 that, in turn, download user code into the Flash. Additionally, the re-programmable Flash device on the nanoMODUL-164 enables easy update of user code and the target application in which the nanoMODUL-164 has been implemented.

Currently the nanoMODUL-164 can be populat with three different sized Flash devices: a 29F200 with 256 KB, a 29F400 with 512 KB or a 29F800 with 1 MB.

FlashTools always uses the Bootstrap mode to transfer the required microcontroller firmware to the nanoMODUL-164. Hence, there is no restriction in using the Flash memory for storing user code.

Before Flash programming FlashTools will adjust the internal Chip Select Unit and the bus configuration of the microcontroller during the Bootstrap download. This results in the following programming memory model:

- ◆ Flash addressable at 00:0000H-07:FFFFH (up to 512 KB Flash)
- ◆ RAM addressable at 08:00000H-0F:FFFFH (up to 512 MB RAM)

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash the memory model is different:

RAM from 0x000000 to 0x0FFFFF,

ROM from 0x1000000 to 0x1F7FFF).

Using the Bootstrap mode to transfer the required microcontroller firmware to the nanoMODUL-164 the FlashTools maintains its independent Flash programming capability.

5.1.2 FlashTools for Windows

Flash is a highly functional means of storing non-volatile data. One of its advantages is the possibility of on-board programming. Programming tools for the Flash device are delivered with the nanoMODUL-164 in the form a set of executable and binary files that run under Windows9x/NT. These tools make use of the Bootstrap mode to transfer executable code to the nanoMODUL-164 that, in turn, download user code into the Flash. Additionally, the reprogrammable Flash device on the nanoMODUL-164 enables easy update of user code and the target application in which the nanoMODUL-164 has been implemented.

Currently the nanoMODUL-164 can be populat with three different sized Flash devices: a 29F200 with 256 kByte, a 29F400 with 512 kByte or a 29F800 with 1 MB.

FlashTools always uses the Bootstrap mode to transfer the required microcontroller firmware to the nanoMODUL-164. Hence, there is no restriction in using the Flash-Memory for storing user code.

Before Flash programming FlashTools will adjust the internal Chip Select Unit and the bus configuration of the microcontroller during the Bootstrap download. This results in the following programming Memory-Model:

- ◆ Flash addressable at 00:0000H-07:FFFFH (up to 512 kByte Flash)
- ◆ RAM addressable at 08:00000H-0F:FFFFH (up to 512 MB RAM)

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash the Memory-Model is different:

RAM from 0x000000 to 0x0FFFFF,

ROM from 0x1000000 to 0x1F7FFF).

Using the Bootstrap mode to transfer the required microcontroller firmware to the nanoMODUL-164 the FlashTools maintains its independent Flash programming capability.

5.2 Start164.a66

The code within the assembly file *start164.a66* is responsible for the initial controller configuration and the start-up initialisation of your C project. This includes adjusting the properties of the external bus signals and Chip Select signals, setting of the system stack, initialisation of variables and clearing of memory areas.

It is very important that this code will execute prior to the execution of user code. To ensure this, it is recommended that the startup code occupy the Reset vector of the application, which is the location the microcontroller starts execution after Reset (0x0000). After performing the initialisation steps your individual main() function is called by the start-up code. To accommodate the start-up code to the needs of your application copy it from the directory described above to your project directory. You can then edit, modify and compile it using the Keil macroassembler. Since the start-up code will usually be implicitly taken into consideration from the default runtime libraries you must now explicitly tell your linker to instead consider your individual startup object file. To do this we recommend adding your modified start164.a66 file to your project. Be sure that it is always included in the Link/Lib process of your project (see options within the Project window of the Keil tool chain in section 3.5).

The Keil tool chain collects all initialization information for preinitialized variables (e.g. int i=3;) during compile and link time. This information is stored within a special segment in the form of a list of binary data entries. To mark the end of this list, the tool chain adds a special entry to the list. Whenever the startup code finds this special entry it ends the initialization of variables and continues executing. Note that this end of list entry comes from the *start164.obj* object file. To ensure consideration of all of your pre-initialized variables, you must move *start164.obj* to the end of the list of your link files. Otherwise some of your pre-initialized variables may not be initialized by the startup code during runtime. It is usually very difficult to detect such a mistake.

We recommend to always move *start164.a66* to the end of your projects file list.

5.3 Linking and Locating

The Linker has to combine several re-locatable object modules contained in object files and/or libraries to generate a single absolute object.

In addition the Linker must locate several segments of type code, constants and data to fixated address locations within the address range of the microcontroller to ensure the natural or explicitly declared properties of these segments.

Data segments must always be located to any kind of random access memory (e.g. RAM), code and constants segments should be located to any kind of non-volatile memory (e.g. Flash). The C166 family has a Von-Neumann architecture which uses the same read signal to fetch data and also code or constants. To distinguish between non-volatile and modifiable memory physically different memory devices must be addressable within different address ranges.

To enable easy accommodation of the linking process the Linker collects segments of equal type to classes.

The Keil tool chain distinguishes the following classes:

• xCODE: code for several addressing modes (x = N, I, F, H or X)

• xDATA: not initialised data for several addressing modes (x = N, I, F, H or X)

• xDATA0: pre-initialised data for several addressing modes (x = N, I, F, H or X)

• xCONST: constants for several addressing modes (x = N, I, F, H or X)

It is required that all *x*DATA and *x*DATA0 classes segments are located to any internal RAM of the C164 or any external RAM of the nanoMODUL-164. Also all *x*CODE and *x*CONST classes must be located to any internal non-volatile memory (e.g. Flash, OTPROM) of the C164 or any external Flash-Memory of the nanoMODUL-164.

A near address data area (NDATA, NDATA0) must reside in one data page (16 kByte). A near address code area (NCODE, NCONST) must reside in one code segment (64 kByte).

To ensure proper execution of your application you must take into account the runtime Memory-Model when linking and locating. This means that you must instruct the Linker where to assume external RAM for locating data classes and Flash for locating code and constant classes.

The default configuration of the nanoMODUL-164 has 256 kByte Flash and 256 kByte RAM.

Note, that you will see multiple mirrors of a memory device that has a physical smaller address range than the associated address range of the Chip Select signal.

For instance if you adjust Chip Select Signal /CS1 to be active within an address range of 1 MB and the actually memory size populating the nanoMODUL is just 256 kByte, you will get three mirrors of your RAM.

5.4 Debugging using Monitor kernel

Whenever you decide to use the μ Vision2 target debugger or Mon166 target Monitor to debug your application, some special precautions must be taken into consideration to ensure proper code execution of your application.

Your application and the Keil Monitor kernel contained in the files **boot** and **monitor** must share some memory locations within the target system. If you do not consider the physical Memory-Model already claimed by the kernel and the memory requirements of the kernel, you may get conflicts in memory use. This typically leads to variables containing not their assigned value, functions returning bad results and modified code.

If you have a nanoModul-164 with 1 MB SRAM or 1 MB Flash use the files from the default location:

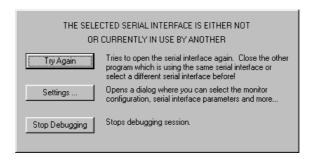
C:\PHYBasic\nM164\Tools\Mon\MonMx

To obtain information about the memory requirements of the Monitor, the corresponding memory map file *monitor.m66* is made available together with the *monitor* executable file. This file contains a detailed memory map of the Monitor and is also located in the default destination mentioned above.

You have to link your application to prevent any overlapping memory ranges. Since the Monitor also uses some special interrupts for communication with the host-PC at runtime, you should add a *Reserve:* statement for 0x008-0x011, 0x0AC-0x0AF to the *Location* tab of your *L166 Linker* options to reserve at least these ranges.

You should always ensure segments of your application will not reach the segments of the Monitor. The Monitor's segments will usually be linked to the top of the memory leaving you as much memory space as possible.

The Monitor is linked under the assumption of maximum memory upgrading for Flash bank 1 and RAM bank 1. Remember that you will have multiple additional mirrors of the physical devices actually mounted on the nanoMODUL-164 if their capacity is less than the maximum value of 1 MB.


For instance if you have 256 kByte of RAM mounted on the nanoMODUL-164 you will have one additional mirror of the RAM within the reserved 512 kByte range. Note that in this case all associated address ranges of 0x40000-0x7FFFF will actually address the same physical device address range of 0x000000-0x3FFFF. This really means that exactly the same physical memory location can be addressed using four different internal addresses. This must be taken into consideration when you verifying your memory mappings.

Appendices

A Troubleshooting

A.I µVision2 debugger in Monitor mode:

If μVision2 communication to the target system is not successful, it will error out as indicated in the dialog box shown below. If this happens, check if the proper serial port is selected or try other baud rates. The correct speed should be 9,600 baud. Click on *Try Again* after forcing the target system into Bootstrap mode again and reentering communication parameters.

The serial FIFO buffer in Windows 95 can cause transmission problems. μ Vison2 debugger may have problems completing the communication initialization process. This can be intermittent. The FIFO can be disabled under *Controlpanel/System/Device Manager/Port Settings/Advanced*. Make sure *Use FIFO buffers* in this menu is not activated.

A.II Monitor Configuration Error

If Monitor 166 kernel download is not successful, it will error out as indicated in the "MONITOR Configuration Error" dialog box shown below. If this happens, make sure that you have selected the right target hardware under *Options for Target/Debug/Settings/Monitor configuration*. This step is crucial to ensure proper communication between the target hardware and debug environment.

Document:	nanoMODUL-164 Q	QuickStart Instructions
Document num	ber: L-379e_4, May 2003	
How would you	improve this manual?	
Did you find an	y mistakes in this manual	? page
Submitted by: Customer numb	er:	
Name:		
Company:		
Address:		
Return to:	PHYTEC Technologie Holdir Postfach 100403 D-55135 Mainz, Germany Fax: +49 (6131) 9221-33	ng AG

