

phyCORE-MPC555

Hardware Manual

Edition July 2005

A product of a PHYTEC Technology Holding company

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark $(^{TM})$ and copyright $(^{C})$ symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC Meßtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Meßtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Meßtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC Meßtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Meßtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2005 PHYTEC Meßtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Meßtechnik GmbH.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (800) 0749832 order@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Web Site:	http://www.phytec.de	http://www.phytec.com

5th Edition: July 2005

Pref	ace		1
1	Intr	oduction	1
	1.1	Block Diagram	4
	1.2	View of the phyCORE-MPC555	5
2	Pin	Description	7
3	Jum	npers	19
4	Pow	er System and Reset Behavior	25
5	Star	rt-up System Configuration	27
	5.1	Power-On Reset Phase	27
	5.2	Hard Reset Configuration Word	28
6	Syst	em Memory	29
	6.1	Memory Model after Reset	29
	6.2	Runtime Memory Model	31
	6.3	Flash Memory	32
		6.3.1 Internal Flash Memory of the MPC555	32
		6.3.2 External Flash Memory (U2, U3)	32
	6.4	Synchronous BURST-SRAM (U4 – U7)	33
	6.5	Serial Memory (U8)	34
7	Seri	al Interfaces	37
	7.1	RS-232 Interface	37
	7.2	CAN Interface	38
	7.3	BDM-Debug Interface	39
8	Real	I-Time Clock RTC-8564 (U10)	41
9	Tecl	hnical Specifications	43
10	Hin	ts for Handling the Module	46
11	Rev	ision History	47
App	endic	ces A	49
	A.1	Release Notes	49
Inde	ex		51

Index of Figures and Tables

Figure 1:	Block Diagram phyCORE-MPC555	4
Figure 2:	View of the phyCORE-MPC555	5
Figure 3:	Pinout of the phyCORE-MPC555 (Bottom View)	7
Figure 4:	Numbering of the Jumper Pads	19
Figure 5:	Location of the Jumpers (Controller Side) and Default Setting (Standard Version of the phyCORE-MPC555)	
Figure 6:	Location of the Jumpers (Connector Side) and Default Setting (Standard Version of the phyCORE-MPC555)	20
Figure 7:	Power Concept	
Figure 8:	Default Memory Model after Hardware Reset	
Figure 9:	I ² C Slave Address of the Serial Memory (U8)	
Figure 10:	10-pin BDM Connector and Corresponding Pins of the phyCORE-Connector	40
Figure 11:	Physical Dimensions	

Table 1:	Pinout of the phyCORE-Connector X1	
Table 2:	Jumper Settings	
Table 3:	Clock Mode Configuration via Jumpers J2, J3 and J4	
Table 4:	Runtime Memory Map	
Table 5:	Flash Memory Device and Manufacturers Overview	
Table 6:	Memory Options for the Synchronous BURST-SRAM	
Table 7:	Memory Options for the Serial Memory U8	
Table 8:	I ² C Address of the Serial Memory	
Table 9:	Technical Data	44

Preface

This phyCORE-MPC555 Hardware Manual describes the module's design and functions. Precise specifications for the Motorola MPC555 microcontroller series can be found in the enclosed MPC555 microcontroller Data-Sheet/User's Manual. If software is included please also refer to additional documentation for this software.

In this hardware manual and in the attached schematics, low active signals are denoted by a "/" in front of the signal name (i.e.: /RD). A "0" indicates a logic-zero or low-level signal, while a "1" represents a logic-one or high-level signal. The MSB and LSB of the data and address busses shown in the circuit diagram are based on the conventions of Motorola. Accordingly, D31 and A31 represent the LSB, while D0 and A0 represent the MSB. These conventions are also valid for the parallel I/O signals.

Declaration regarding Electro Magnetic Conformity of the PHYTEC phyCORE-MPC555

PHYTEC Single Board Computers (henceforth products) are designed for installation in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Note:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m. PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header rows or connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

The phyCORE-MPC555 is one of a series of PHYTEC Single Board Computers that can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports common 8-, 16- and selected 32-bit controllers on two types of Single Boards Computers:

- (1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
- (2) as insert-ready, fully functional micro-, mini- and phyCORE OEM modules, which can be embedded directly into the user's peripheral hardware, design.

PHYTEC's microcontroller modules allow engineers to shorten development horizons, reduce design costs and speed project concepts from design to market.

1 Introduction

The phyCORE-MPC555 belongs to PHYTEC's phyCORE Single Board Computer module family. The phyCORE SBCs represent the continuous development of PHYTEC Single Board Computer technology. Like its mini-, micro- and nanoMODUL predecessors, the phyCORE boards integrate all core elements of a microcontroller system on a sub-miniature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

As independent research indicates that approximately 70 % of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments the phyCORE board design features an increased pin package. The increased pin package allows dedication of approximately 20 % of all pin header connectors on the phyCORE boards to Ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyCORE boards even in high noise environments.

phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD and laser-drilled Microvias components are used on the boards, providing phyCORE users with access to this cutting edge miniaturization technology for integration into their own design.

The phyCORE-MPC555 is a subminiature (72 x 57 mm) insert-ready Single Board Computer populated with Motorola's PowerPC MPC555 microcontroller. Its universal design enables its insertion in a wide range of embedded applications. All controller signals and ports extend from the controller to high-density (0,635 mm) Molex pin header connectors aligning two sides of the board, allowing it to be plugged like a "big chip" into a target application. Precise specifications for the controller populating the board can be found in the applicable controller User's Manual or Data Sheet. The descriptions in this manual are based on the MPC555 controller. No description of compatible microcontroller derivative functions is included, as such functions are not relevant for the basic functioning of the phyCORE-MPC555.

The phyCORE-MPC555 offers the following features:

- Single Board Computer in subminiature form factor (72 x 57 mm) according to phyCORE specifications
- All applicable controller and other logic signals extend to two high-density 160-pin Molex connectors
- Processor: Motorola embedded PowerPC MPC555 (40 MHz clock)

• Internal Features of the MPC555:

- 32-bit PowerPC core, 40MHz CPU speed
- 64-bit Floating Point Unit
- 26 kByte SRAM; capable of battery buffering
- 448 kByte FLASH
- Dual UART/SPI
- Dual CAN 2.0B
- Dual TPU with 16 channels each
- Two 16-bit timer system
- Eight channel 16-bit PWM system
- Dual 10-bit ADC (7µs) with 32(41) channels (ext. MUX)
- Multi-Purpose I/O signal
- JTAG/BDM test/debug port

• Memory Configuration¹:

- SRAM:	128 kByte to 8 MB flow-through Synchronous Burst-RAM 32-bit access
	0 wait states, 2-1-1-1 Burst mode
- Flash-ROM:	0 / 512 kBytes/ 1 MB/ 2 MB/ 4 MB,
	32-bit width
- I ² C Memory:	4 kByte EEPROM (up to 32 kByte, alter-
	natively I ² C FRAM, I ² C SRAM)

- I²C Real-Time Clock with calendar and alarm function
- Power-down/wake-up support via RTC, decrementor, or external signal

•	Dual UART/SPI port:	RS-232 transceiver for both channels
		(RxD/TxD); also configurable as TTL
•	Dual CAN port	CAN transceiver 82C251 for both channels.

- Dual CAN port: CAN transceiver 82C251 for both channels; also configurable as TTL
- JTAG/BDM test/debug port
- Available in standard (0...+70°C) and industrial (-40...+85°C) temperature ranges

¹: Please contact PHYTEC for more information about additional module configurations.

1.1 Block Diagram

Figure 1: Block Diagram phyCORE-MPC555

1.2 View of the phyCORE-MPC555

Figure 2: View of the phyCORE-MPC555

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

As *Figure 3* indicates, all controller signals extend to high density 0,635 mm SMT-plugs (refered to as phyCORE-Connector) lining two sides of the board (*refer to section 9*). This allows the phyCORE-MPC555 to be plugged into any target application like a "big chip".

Many of the controller port pins accessible at the edges of the board have been assigned alternate functions that can be activated via software.

Table 1 provides an overview of the pinout of the phyCORE-Connector. Please refer to the Motorola MPC555 User Manual/Data Sheet for details on the functions and features of controller signals and port pins.

Figure 3: Pinout of the phyCORE-MPC555 (Bottom View)

© PHYTEC Meßtechnik GmbH 2005 L-523e_5

Pin Number	Connection	I/O	Comments
Pin row X1A			
1A	EXTCLK	Ι	Optional external clock input of the MPC555
2A, 7A, 12A,	GND	-	Ground 0 V
17A, 22A, 27A,			
32A, 37A, 42A,			
47A, 52A, 57A,			
62A, 67A, 72A,			
77A			
3A	/IRQ3	Ι	/IRQ3 interrupt of the MPC555.
			Alternative: /KR, /RETRY, SGPIOC3 (I/O)
4A	/IRQ0	Ι	/IRQ0 interrupt of the MPC555.
			Alternative: SGPIOC0 (I/O)
5A	/CS2	0	Free /CS signal of the MPC555.
6A	/CS1	0	/CS signal of processor for control of
			synchronous SRAM U4-U7.
8A	/WE3	0	Write enable signal for the data lines
			D[2431]. Note that D31 represents the LSB
			Alternative: AT3 (O)
			The alternative function may only be used if
			no on-board memory is populated.
9A, 10A, 11A,	A30, A29, A27,	I/O	Address lines ¹
13A, 14A, 15A,	A24, A22, A21,		Alternative:
16A, 18A, 24A,	A19, A16, A14,		SGPIOA30, SGPIOA29, SGPIOA27,
25A, 26A, 28A	A13, A11, A8		SGPIOA24, SGPIOA22, SGPIOA21,
			SGPIOA19, SGPIOA16, SGPIOA14,
			SGPIOA13, SGPIOA11, SGPIOA8 (I/O)
			For the use of the alternative function, note
			that the address lines are partially used for
			memory addressing.
19A, 20A, 21A,	D30, D29, D27,	I/O	Data lines ¹
23A, 29A, 30A,	D24, D22, D21,		Alternative: SGPIOD30, SGPIOD29,
31A, 33A, 38A,	D19, D16, D14,		SGPIOD27, SGPIOD24, SGPIOD22,
39A, 40A, 41A,	D12, D11, D9,		SGPIOD21, SGPIOD19, SGPIOD16,
43A, 44A, 45A,	D6, D4, D3,		SGPIOD14, SGPIOD12, SGPIOD11,
46A	D1		SGPIOD9, SGPIOD6, SGPIOD4, SGPIOD3,
			SGPIOD1 (I/O)
			For use of the alternative function, note that
			the data lines are used to connect the on-
			board memory devices.
34A	/TA	I/O	Transfer acknowledge signal of the
			MPC555.
35A	/TEA	I/O	Transfer error acknowledge signal of the
			MPC555.
36A	/BB	I/O	Bus busy signal of the MPC555.
			Alternative: VF2 (O), IWP3 (O)
51A	TSIZ0	I/O	Transfer size signal of the MPC555.

Pin Number	Connection	I/O	Comments
48A, 49A, 50A	NC	-	Not connected
			These contacts should remain unconnected
			on the target hardware side.
53A	/TS	I/O	Transfer start signal of the MPC555.
54A	RDNWR	I/O	Read/write (RD//WR) signal of the MPC555.
55A	/BDIP	I/O	Burst data in progress signal of the MPC555.
56A	/BURST	I/O	Burst indicator signal of the MPC555.
58A	/BI//STS	I/O	Burst inhibit signal of the MPC555.
			Alternative: special transfer start (O)
60A	B_TPU15,	I/O	TPU I/O signals connected to the TPU B of
61A	B_TPU13,		the MPC555.
63A	B_TPU11,		
64A	B_TPU9,		
65A	B_TPU7,		
66A	B_TPU5,		
68A	B_TPU3,		
69A	B_TPU1		
70A	B_T2CLK	I/O	Clock signal of the TPU B of the MPC555.
71A	A_TPU15,	I/O	TPU I/O signals connected to the TPU A of
73A	A_TPU13,		the MPC555.
74A	A_TPU11,		
75A	A_TPU9,		
76A	A_TPU7,		
78A	A_TPU5,		
79A	A_TPU3,		
80A	A_TPU1		
Pin row X1R			
1B		0	Processor clock of the MPC555
2B	/IRO1	I	/IRO1 interrupt request of the MPC555
20		1	Alternative: /RSV (O) SGPIOC1 (I/O)
3B	/IRO2	T	/IRO2 interrupt request of the MPC555
50	/11(22	1	Alternative: /CR (I) SGPIOC2 (I/O) /MTS
			(0)
			Per default, following a system reset, the
			/MTS function is pre-selected. The function
			can be configured in the register SIUMCR
			(Bits MTSC, MLRC).
4B, 9B, 14B,	GND		Ground 0 V
19B, 24B, 29B,			
34B, 39B, 44B,			
49B, 54B, 59B,			
64B, 69B, 74B,			
79B			

Pin Number	Connection	I/O	Comments
5B	/CS3	0	Free /CS signal of the MPC555
6B	/CS0	0	/CS signal ¹ of the MPC555 used as control of
			the on-board Flash memory
7B	/OE	0	Output enable ¹ signal of the MPC555
8B, 10B, 11B,	A31. A28, A26,	I/O	Address lines ¹ : A31 is the LSB!
12B, 13B, 15B,	A25, A23, A20,		Alternative:
16B, 17B, 23B,	A18, A17, A15,		SGPIOA31, SGPIOA28, SGPIOA26,
25B, 26B, 27B	A12, A10, A9		SGPIOA25, SGPIOA23, SGPIOA20,
			SGPIOA18, SGPIOA17, SGPIOA15,
			SGPIOA12, SGPIOA10, SGPIOA9 (I/O)
			For use of the alternative function, note that
			the address lines are partially used for
			memory addressing.
18B, 20B, 21B,	D31, D28, D26,	I/O	Data lines ¹ : D31 is the LSB and D0 is the
22B, 28B, 30B,	D25, D23, D20,		MSB!
31B, 32B, 37B,	D18, D17, D15,		Alternative:
38B, 40B, 41B,	D13, D10, D8,		SGPIOD31, SGPIOD28, SGPIOD26,
42B, 43B, 45B,	D7, D5, D2,		SGPIOD25, SGPIOD23, SGPIOD20,
46B	D0		SGPIOD18, SGPIOD17, SGPIOD15,
			SGPIOD13, SGPIOD10, SGPIOD8,
			SGPIOD7, SGPIOD5, SGPIOD2,
			SGPIOD0 (I/O)
			For use of the alternative function, note that
			the address lines are partially used for
		-	memory addressing.
33B	/WE2	0	Write enable signal ¹ for data lines $D[1623]$
			Alternative: A12 (0)
			The alternative function can only be used
25D	(D)C	L/O	when no on-board memory is populated.
33B	/BG	1/0	Alternative: VE0 (0) LWD1 (0)
26D	/DD	I/O	Alternative: VF0 (O), LWF1 (O)
30D	/DK	1/0	Δ lternative: VF1 (Ω) IWP2 (Ω)
47B 48B 50B	NC	_	Not connected
47 D , 40 D , 50 D	ne		These contacts should remain unconnected on
			the target hardware side.
51B	TSIZ1	I/O	Transfer size signal of the MPC555.
52B	/WE1	0	Write enable signal for data lines D[815]
			Alternative: AT1 (O)
			The alternative function can only be used when
			no on-board memory is populated.
53B	/WE0	0	Write enable signal for data lines D[07]. Note
			that D0 represents the MSB!
			Alternative AT0 (O)
			The alternative function can only be used when
			no on-board memory is populated.

Pin Number	Connection	I/O	Comments
55B	/IRQ4	Ι	/IRQ4 Interrupt request of the MPC555
	-		Alternative: AT2 (O), SGPIOC4 (I/O)
56B	MODCK1	Ι	Mode clock select of the MPC555
			MODCK1 is active only while /PORSET =
			low. Afterwards the alternative functions of
			this pin are available.
			Alternative: /IRQ5 (I), SGPIOC5 (I/O)
57B, 58B	MODCK2,	Ι	Mode clock select of the MPC555
	MODCK3		MODCK2 and MODCK3 are active only while
			/PORSET= low. Afterwards the alternative
			functions of these pins are available.
			Alternative: /IRQ6, /IRQ7 (I)
60B	B_TPU14,	I/O	TPU I/O signals connected with the TPU B of
61B	B_TPU12,		the MPC555.
62B	B_TPU10,		
63B	B_TPU8,		
65B	B_TPU6,		
66B	B_TPU4,		
67B	B_TPU2,		
68B	B_TPU0		
70B	A_T2CLK	I/O	Clock signal of the TPU A of the MPC555
71B	A_TPU14,	I/O	TPU I/O signals connected with the TPU A of
72B	A_TPU12,		the MPC555.
73B	A_TPU10,		
75B	A_TPU8,		
76B	A_TPU6,		
77B	A_TPU4,		
78B	A_TPU2,		
80B	A_TPU0		
Pin row X1C			
1C, 2C	+3V3	Ι	Supply Voltage +3.3 VDC
3C, 7C, 12C,	GND	-	Ground 0V
17C, 22C, 27C,			
32C, 37C, 42C,			
47C, 52C, 57C			
4C, 5C	+5V	Ι	Supply Voltage +5 VDC
6C	VBAT	Ι	Connection for external battery (+)2.4 - 3.3V
8C	+3V3GOOD	0	Indicator signal for a valid input voltage +3V3

Pin Number	Connection	I/O	Comments
9C	TEXP /	I/O	While the /HRESET is active, the pin serves
	/RSTCNF		as an input and determines the source of the
			Hard Reset Configuration Word (HRCW). If
			a low level is applied, the HRCW is read
			from the data bus. Otherwise an internal
			HRCW is used that is derived from either the
			Flash (CMCFIG with /HC=0) or, in the case
			that $/HC = 1$, will be read as default value
			0x00000000. Note that during /HRESET
			phase with /RSTCNF= high, the data bus
			must be held at tri-state. In normal operation
			/ shut-down, the pin functions as an output
			and controls the power switch for VDDH and
			VDDL.
10C	/HRESET	I/O	Hard-reset signal ¹ of the MPC555. An Open-
		7/0	Drain transceiver controls /HRESET.
11C	/PORSET	I/O	Power-on reset of the MPC555. An open
			drain transceiver controls the /PORESET.
			/PORESET monitors the input voltage $+3V3$
120	101015	T/O	and VPD.
13C	MPIO15,	1/0	MIOS GPIO signals of the MPC555.
14C	MPIO13,		
150	MPIOTI,		
16C	MPIO9, MDIO7		
190	MPIO/,		
24C 20C	MPIO0, MDIO5		
<u> </u>		L/O	CANUL output of the CAN transpoiser of the
180	B_CANH	1/0	CANH output of the CAN transceiver of the
200	ECK	T	External hand alock input of both UAPTs of
200	ECK	1	the MPC555
210	PyD2	T	RyD input of the PS 232 transceiver of the
210	KAD2	1	second serial interface 114 must be closed in
			order to use this interface
230	TvD2	0	Typ output of the RS-232 transceiver of the
250	TXD2	U	second serial interface
250	OGPIO5	I/O	General purpose input/output of the MPC555
230	201105	1/0	Alternative: MOSI master out / slave in of
			the QSPI interfaces. (I/O)
26C, 28C	QGPIO3,	I/O	General purpose input/output of the MPC555
,	QGPIO1		Alternative: PCS3, PCS1 peripheral /CS
	-		signal of the QSPI interfaces. (I/O)

Pin Number	Connection	I/O	Comments
30C,	MPIO4,	I/O	MIOS-GPIO signals of the MPC555
38C	MPIO3		Alternative: VFLS1, VFLS0 (VFLS bit in
			MIOS1TCR) (A)
31C	SCL	I/O	I ² C Clock signal: The signal can be
			generated with SGPIOC7 via software or by
			using an external pin. SCL and SGPIOC7 are
			coupled via the 100R resistor at R38.
33C	DSDI	Ι	Development-Serial-Data-Input of the
			MPC555 BDM interface.
			Alternative: TDI Test-Data-In of the
			MPC555 JTAG port.
			The HRCW (D11) determines which
			function is active
34C	/TRST	Ι	Test-Reset input of the MPC555 JTAG port.
			/TRST is connected with /PORESET using a
			10k resistor
35C	DSCK	Ι	Development-Serial-Clock of the MPC555
			BDM port.
			Alternative: TCK Test-Clock of the MPC555
			JTAG port
			The HRCW (D11) determines which
			function is active
36C	TMS	Ι	Test-Mode-Select of the MPC555 JTAG port
39C	MPIO1	I/O	MIOS-GPIO signals of the MPC555
			Alternative: VF1- Visible-Instruction-Queue-
			Flash-Status (VF bit in MIOS1TPCR) (0)
40C,	MDA9,	I/O	Double-Action I/O MDA [31, 29, 27] of the
41C, 43C	MDA7, MDA5		MPC555-MIOS. These signals serve either
			as Input-Capture or Output-Compare
44C,	MDA3	I/O	Double-action I/O MDA[14, 12] of the
45C	MDA1		MPC555-MIOS. These signals serve as
			either Input-Capture or Output-Compare.
			Alternatively these signals serve the external
			reload of the counter register within the
			counter modules.
46C	MPWM7,	I/O	PWM output or I/O signals of the MPC555
48C	MPWM5,		MIOS
49C	MPWM3,		(MPWM19, MPWM17, MPWM3, MPWM1,
50C	MPWM1,		MPWM0)
51C	MPWM0		

Pin Number	Connection	I/O	Comments
53C		I	Paggive line of the second MPC555 UAPT
550	KAD2_IIL	1	Alternative: OCDI2 general purpose input
			Alternative: QGP12 general purpose input
			(1). When the alternative function is used,
			solder jumper J 14 must be open in order to
			disconnect the receive output of the RS-232
			transceiver.
54C	TXD2_TTL	0	Transmit line of the second MPC555 UART
			Alternative:
			QGPO2 general purpose output (O)
55C	/PWRON	0	/PWRON controls the FET switch of the
			+3V/VDDL and 5+V/VDDH supply voltages
56C	/WAKEUP	I/O	Low level at /WAKEUP completes a module
			shut down and prompts activation of the
			voltage supply. On the module, the RTC
			interrupt /IRTC can be connected to
			/WAKEUP using Jumper J15. /WAKEUP
			should have a wired-OR connection against
			GND.
58C	ETRIG2,	Ι	Trigger inputs of the QADC modules A and
59C	ETRIG1		B on the MPC555
60C,	B AD14,	I/O	Analog input B AN[58,56] of QADC
61C	B AD12		module B on the MPC555
	-		Alternative: B POA [6, 4] digital I/O
62C, 67C, 72C,	GNDA	-	Ground 0V for analog signals.
77C			GNDA is connected to GND using the 0R
			resistor at R31.
63C	B AD10.	I/O	Analog input B AN [54,52] of OADC
64C	B AD8		module B on the MPC555
	_		Alternative: B MA[2.0] (O)
			Alternative: B POA[2.0] digital I/O
65C	B AD6.	I	Analog input B AN[50,48] of OADC
66C	B AD4	-	module B on the MPC555
000	<i>D_11D</i> 1		Alternative: B POB[64] digital input (I)
68C	B AD2	I	Analog input B AN[2 0] of $OADC$ module
69C	B_AD0	1	B on the MPC555
0,0	D_ND0		Alternative: B ANY B ANW (I)
			Alternative: B_POB[2 0] digital input (I)
700	A AD14	I/O	Analog input A AN[58 56] of OADC
710	$\Delta \Delta D17$	10	module A on the MPC555
/10	Α_ΑΡΙ2		Alternative: $\Delta PO\Delta[6.4]$ digital I/O
720	A AD10	I/O	Analog input A AN[54 52] of OADC
730		1/U	module A on the MDC555
/4C	A_ADo		Alternative: A $MA[2,0](O)$
			Alternative: $A_VIA[2,0](0)$
			Alternative: A_PQA[2,0] digital I/O

Pin Number	Connection	I/O	Comments
75C	A_AD6	Ι	Analog input A_AN[50,48] of QADC
76C	A_AD4		module A on the MPC555
			Alternative: A_PQB[6,4] digital input
78C	A_AD2	Ι	Analog input A_AN[2,0] of QADC module
79C	A_AD0		A on the MPC555
			Alternative: A_ANY, A_ANW (I)
			Alternative: A_PQB[2,0] digital input (I)
80C	VDDA	0	Voltage supply +5 VDC for analog signals.
			VDDA is coupled with VDDH using a choke
			at L1.
Pin row X1D			
1D, 2D	+3V3	I	Supply Voltage +3.3 VDC
3D, 9D, 14D,	GND	-	Ground 0V
19D, 24D, 29D,			
34D, 39D, 44D,			
49D, 54D	NG		
4D, 5D	NC	-	Not connected
			I nese contacts should remain unconnected
(D	VDD	0	On the target hardware side.
0D	VPD	0	Power-down supply voltage VPD, this is
			generated by $\sqrt{DA1}$ of $+5\sqrt{5}$ using a diode
			MPC555 internal SRAM the Real-Time
			Clock and the serial FPROM
7D	/PFI	I	Power-fail input is a TTL input that serves as
10		-	a manual reset input for the /PORESET.
			/PORESET has a timeout of approximately
			50 ms.
8D	/SRESET	I/O	Soft-reset of the MPC555
10D	/HRESIN	Ι	Hard-reset input controls the system reset
			/HRESET. /HRESET has a timeout of
			approximately 22 ms.
11D	MPIO14,	I/O	MIOS GPIO MPIO32B[14,12,10,8] signals
12D	MPIO12,		of the MPC555
13D	MPIO10,		
15D	MPIO8		
16D	RXD1_TTL	Ι	Receive line of the first MPC555 UART.
			Alternative: QGPI1 general purpose input
			If the alternative function is used, solder
			jumper J13 must be open in order to
			disconnect the receive output of the RS-232
170			transceiver.
1/D	TXDI_TTL	0	I ransmit line of the first MPC555 UART.
			Alternative: QGPO1 general purpose output

Pin Number	Connection	I/O	Comments
18D	B_CANL	I/O	CANL output of the CAN transceiver for the
			second CAN interface
20D	A_CANL	I/O	CANL output of the CAN transceiver for the
			first CAN interface
21D	A_CANH	I/O	CANH output of the CAN transceiver for the
			first CAN interface
22D	RxD1	Ι	RxD input of the RS-232 transceiver for the
			first serial interface. Jumper J13 must be
			closed to use this interface.
23D	TxD1	0	TxD output of the RS-232 transceiver for the
	0.07540.6	*/0	first serial interface
25D	QGPIO6	I/O	General purpose input/output of the MPC555
			Alternative: SCK clock of the QSPI interface
260		L/O	(I/O)
26D	QGPI04	1/0	General purpose input/output of the MPC555
			The OSPL interface (I/O)
27D	OCPIO2	I/O	General purpose input/output of the MPC555
270	Q01102	1/0	Alternative: PCS2 peripheral /CS signals of
			the OSPI interfaces (I/O)
28D	OGPIO0	I/O	General purpose input/output of the MPC555
	C		Alternative: PCS0 peripheral /CS signals of
			the QSPI interfaces (I/O).
			SS: with the help of this bi-directional signal,
			the QSPI interface can switch into Slave
			Mode.
30D	SGPIOC7	I/O	General purpose input/output of the MPC555
			SGPIOC7 is connected to the SCL signal of
			the I ² C bus via R38 and serves as the clock
			signal.
			Alternative: / IRQOUT interrupt output
			After Paset, the LWPO function is active
31D	SGPIOCE	I/O	General purpose input/output of the MDC555
510	5011000	1/0	SGPIOC6 is connected to the SDA signal of
			the I^2C bus via R39 and serves as data signal.
			Alternative: FRZ- freeze (O)
			Alternative: /PTR- program trace (O)
			After reset, the /PTR function is active.

Pin Number	Connection	I/O	Comments
32D	SDA	I/O	Data line of the I ² C bus. SDA is connected to
			the MPC555 signal SGPIOC6 via R39.
33D	/IRTC	0	Interrupt output of the RTC. /IRTC can be
			connected to /WAKEUP using jumper J15.
35D	DSDO	0	Development serial data output of the
			MPC555 BDM port.
			Alternative: TDO test data out of the JTAG
			port (O). The HRCW (D11) determines the
26D	VELSO	0	Iunction. Visible history buffer fluch status of the
30D, 37D	VFLSU, VELS1	0	MPC555 RDM port
570	VILSI		Alternative: IWP[0,1] instruction watchpoint
			(O) The HRCW (D9 D10) determines the
			function.
38D.	MPIO2,	I/O	MIOS GPIO signals of the MPC555
40D	MPIOO		Alternative: VF2, VF0 visible instruction
			queue flush status (VF bit in MIOS1TPCR)
			(0)
41D,	MDA8,	I/O	Double action I/O MDA[30,28,15] of the
42D,43D	MDA6, MDA4		MPC555 MIOS. These signals serve either as
			input capture or output compare.
45D, 46D	MDA2, MDA0	I/O	Double action I/O MDA [13,11] of the
			MPC555 MIOS. These signals serve either as
			Alternatively these signals same as cleak
			input of the counter submodule (MDAO
			MMCSM6_MDA2_MMCCM22)
47D	MPWM6.	I/O	PWM output or I/O signals of the MPC555
48D	MPWM4,	10	MIOS (MPWM[18, 16, 2])
50D	MPWM2		
51D	VDDGOOD	0	Indicator signal for valid supply voltages
			VDDH (+3.3 V) and VDDL (+5 V) after the
			FET switch. If the signal is high, the voltage
			is above the HRESET threshold.
52D	/VDDGOOD	0	Inverted VDDGOOD
53D	EPEE	Ι	EPEE switches the supply voltages of the on-
			chip Flash module on the MPC555 from
			VDDL (+5.5 V) to $VDDH$ (+5 V). It also
55D	B CNTYO	0	CAN transmit line (TTL) of TouCAN
550	D_CNIAU		module B on the MPC555
56D	B CNRX0	I/O	CAN receive line (TTL) of TouCAN module
		10	B on the MPC555. With an activated CAN
			transceiver and Jumper J12 closed, the
			transceiver drives this pin.

Pin Number	Connection	I/O	Comments
57D	A_CNTX0	0	CAN transmit line (TTL) of TouCAN
			module A on theMPC555
58D	A_CNRX0	I/O	CAN receive line (TTL) of TouCAN module
			A on the MPC555. With an activated CAN
			transceiver and J11 closed, the transceiver
			drives this pin.
59D, 64D, 69D,	GNDA	-	Ground 0V for analog signals. GNDA is
74D, 79D			connected to GND using the 0R resistor at
			R31.
60D	B_AD15,	I/O	Analog input B_AN[59,57,55] of QADC
61D	B_AD13,		module B on the MPC555.
62D	B_AD11		Alternative: B_PQA[7,5,3] digital I/O
63D	B_AD9	I/O	Analog input B_AN53 of QADC module B
			on the MPC555.
			Alternative: B_MAI of B_QADC (0)
(7)	D 4 D 7	T	Alternative: B_PQA1 of the digital I/O
65D	B_AD7,	1	Analog input B_AN[51,49] of QADC
66D	B_AD5		module B on the MPC555.
(7)	D 4 D2	T	Alternative: B_PQB[7,5] digital input (I)
6/D	B_AD3	1	Analog input B_AN[3,1] of QADC module
68D	B_AD1		B on the MPC555.
			Alternative: D_AINZ, D_AINA Input (I)
70D	A AD15	L/O	Anelog input A AN[50,57,55] of OADC
70D 71D	$A_AD13,$	I/O	module A on the MPC555
71D 72D	$A \Delta D11$		Alternative: A $POA[7.5.3]$ digital I/O
72D 73D		L/O	Analog input A AN53 of OADC module A
750	A_AD)	цО	on the MPC555
			Alternative: A MA1 of the A-OADC (O)
			Alternative: A POA1 digital I/O
75D.	A AD7.	I	Analog input A AN[51,49] of OADC
76D	A AD5		module A on the MPC555
	-		Alternative: A_PQB[7,5] digital input (I)
77D,	A_AD3,	Ι	Analog input A_AN[3,1] of QADC module
78D	A_AD1		A on the MPC555.
			Alternative: A_ANZ, A_ANX input (I)
			Alternative: A_PQB[3,1] digital input (I)
80D	VRH	0	Reference voltage of the QADC module. If
			Jumper J7 is closed, VRH is connected with
		(I)	VDDA. J7 must be opened in order to use an
			external reference voltage.

Table 1:	Pinout of the	phyCORE-Connector X	1
----------	---------------	---------------------	---

¹: **Caution:**

Because of the LV-Flash devices used the signals A29..A9, D31..D0, /CS0, /OE, /WE0, /WE2 and /HRESET must have signal levels of max. 3.3 V + 0.5 V.

3 Jumpers

For configuration purposes, the phyCORE-MPC555 has 21 solder jumpers, some of which have been installed prior to delivery. *Figure 4* illustrates the numbering of the jumper-pads, while *Figure 5* indicates the location of the jumpers on the board.

Figure 4: Numbering of the Jumper Pads

Figure 5: Location of the Jumpers (Controller Side) and Default Setting (Standard Version of the phyCORE-MPC555)¹

© PHYTEC Meßtechnik GmbH 2005 L-523e_5

Figure 6: Location of the Jumpers (Connector Side) and Default Setting (Standard Version of the phyCORE-MPC555)¹

¹: Jumper J10 and J18 might vary because of different memory on the phyCORE-MPC555.

The jumpers (b) solder jumper) have the following function	The	jumpers	(J = solder)	jumper)	have the	following	functions
--	-----	---------	--------------	---------	----------	-----------	-----------

Jumper	default	Comment
J1		Determines the memory for a program start after reset.
1+2		Internal (on-chip) Flash memory (D20 -> VDDL)
2+3		External (on-board) Flash memory (D20 -> GND)
open	Х	D20 must be externally configured via a 4k7 resistor
Package Type		0R in SMD 0402
J2, J3, J4		These jumpers configure the clock mode of the MPC555.
		When /PORESET is active, the bit pattern connects to the
		MODCK [13] signals of the MPC555. Only the standard
		configurations using the MPC555's oscillator and quartz are
		shown below. The default configuration depends on the
		frequency of the external quartz populating the module.
		Configurations for use of an external clock source can be
		found in the MPC555 user's manual.
1+2, 2+3, 2+3	Х	20 MHz Quartz, limp-mode activated (MODCK[13]=011)
1+2, 1+2, 2+3		20 MHz Quartz, limp-mode deactivated (MODCK[13]=001)
1+2, 2+3, 1+2	Х	4MHz Quartz, limp-mode activated (MODCK[13]=010)
Package Type		0R in SMD 0402
J5		J5 determines the source of the Hard Reset Configuration
		Word (HRCW). During /HRESET, the HRCW configures the
		MPC555.
1+2	v	The HPCW is read via the data bus. Except D20 the data bus
1+2	11	is supported by pull-down resistors and accordingly
		guarantees a valid data word. It configures D20 and
		determines the internal or external Flash memory as boot code
		source
2+3		The internal default word is read as HRCW
210		/HC = 0 the bit pattern (CMECEIG) from the internal Flash
		is read
		/HC = 1: the internal default HRCW 0x00000000 is read
Package Type		OR in SMD 0402
J6		J6 selects the power supply for the internal SRAM of the
		MPC555.
1+2		The module input voltage +3V3 feeds the on-chip SRAM.
2+3	Х	The power-down power supply (VPD) feeds the on-chip
		SRAM. In the event that there is $no + 3V3$ module input
		supply, the VPD is provided by the battery input.
Package Type		0R in SMD 0402
J7		Selects the source for the positive reference voltage of the A/D
		converter modules of the MPC555.
open		The reference voltage VRH is derived from an external
	_	voltage source via phyCORE-Connector Pin X1D80.
closed	X	The reference voltage input is connected to the supply network
		VDDA (+5 V).
Package Type		0R in SMD 0402

Jumper	default	Comment
J8		J8 switches Pin 7 of the serial memory at U8 to high-level. On
		many memory devices, pin 7 enables the activation of a write
		protection function.
		It is not guaranteed that the standard serial memory populating
		the phyCORE-MPC555 will have this write protection
		function. Please refer to the corresponding memory data sheet
		for precise information.
open	Х	Write protection function is disabled.
closed		Write protection function is activated.
Package Type		0R in SMD 0402
J9		J9 switches the I/O signal MPIO0 to the power-down input of
		the synchronous BURST-SRAMs. This enables the external
		RAM banks to be switched to a power saving mode via
		software. During this state, the memory cannot be read or
		written to.
open	Х	The signal MPIO0 is decoupled from the power-down inputs
		ZZ of the SRAMs and can be used for other functions. The ZZ
		inputs are connected to a pull-down resistor.
closed		The signal MPIO0 is connected to the power-down inputs ZZ
		of the SRAMs. A power-down is activated with high-level.
Packaga Typa		OP in SMD 0402
Tackage Type		110 connects the memory hank address signal BA1 to the
310-		processor address line AQ . This jumper must be closed in the
		case that the module is nonulated with synchronous BURST-
		SRAMs that have a canacity of 512k x 32/36 hit (2MB) or
		larger per device. In addition Jumper I18 must be specifically
		set in accordance with the board's memory configuration. The
		factory default setting of J10 will be set according to the
		particular memory configuration of each individual module.
		I I I I I I I I I I I I I I I I I I I
open		Synchronous BURST SRAM devices with a capacity smaller
		than 512k x 32/36 bit (2MB).
closed		Synchronous BURST SRAM devices with a capacity of 512k
		x 32/36 bit (2MB) or larger
Package Type		0R in SMD 0402
J11, J12		J11 and J12 disconnect the CAN receive lines of the MPC555
		from the CAN transceivers at U12 and U13. This makes the
		CONTROLLER'S CAN TIL Signals available at pins X1D58
		(CAN_A) and X1D56 (CAN_B). This is useful for optically
		decoupling the CAN bus signals from the core logic.
onen		The CAN receive signals A CANRXO and R CANRXO are
open		disconnected from the CAN transceiver and are available at
		nin X1D58 (A CANRX0) and X1D56 (R CNRX0)
closed	x	The CAN receive signals A CANRX0 and R CANRX0 are
ciosed	1	connected to the CAN transceiver
Package Type		OR in SMD 0402
r ackage rype	1	

Jumper	default	Comment
J13, J14		J13 and J14 connect the receive lines of both MPC555 UARTs
		to the RS-232 transceiver at U11. When left open the
		controller's RS-232 TTL signals are available at pins X1D16
		(RXD1_TTL) and X1C53 (RXD2_TTL). This is useful for
		optically decoupling the RS-232 signals from the core logic.
open		The UART receive signals RXD1_TTL and RXD2_TTL are
		disconnected from the RS-232 transceiver. These signals are
	**	available at X1D16 (RXD1_T1L) and X1C53 (RXD2_T1L).
closed	X	The UART receive signals RXD1_TTL and RXD2_TTL are
		connected to the RS-232 transceiver.
Package Tune		OR in SMD 0402
III5		lumper 115 connects the alarm interrupt output of the Real-
515		Time Clock (RTC) to the /WAKEIP signal of the nower
		supply. Through programming of the RTC alarm functions, a
		precise wake up from a power-down can be executed.
open		The signal /IRTC is disconnected from the /WAKEUP input.
		/WAKEUP is tied to the potential of the supply voltage $+3V3$
		via the pull-up resistor R24.
closed	X	The signal /IRTC is connected with the /WAKEUP input. The
		interrupt output of the RTC is of the open-drain type.
		/WAKEUP can further be used on the target hardware side
		(wired-OR against GND).
Dockago Typo		OP in SMD 0402
I16 I17		116 and 117 define the slave address (A2 and A1) of the serial
J10, J17		memory on the I^2C hus. In the high-nibble of the address I^2C
		memory devices have the slave ID 0xA The low-nibble
		consists of A2. A1. A0. and the R/W bit. A0 is tied to GND. It
		must be noted that the RTC at U10 is also connected to the I^2C
		bus. The RTC has the preconfigured address 0xA2 / 0xA3 that
		cannot be changed.
1+2, 2+3		A2= 0, A1= 0, A0= 0 (0xA0 / 0xA1)
1+2, 1+2		A2= 1, A1= 0, A0= 0 (0xA8 / 0xA9)
2+3, 2+3		A2= 0, A1= 1, A0= 0 (0xA4 / 0xA5)
2+3, 1+2	X	A2=1, A1=1, A0=0 (0xAC / 0xAD)
		I'C slave address 0xAC for write operations and 0xAD for
		read access.
Dookago Tymo		OP in SMD 0402
гаскаде туре		

Jumper	default	Comment
J18 ¹		J18 connects the memory bank address signals BA0 and BA1 to the corresponding address lines of the processor. The configuration of these jumpers is dependent on the memory size of the synchronous BURST-SRAM populating the module. The factory setting of J18 is in accordance with the memory configuration of each individual module. All four memory banks are typically equipped with the same devices. Please note that Jumper J10 must be specifically set in accordance with the board's memory configuration Jumper J10 is only closed when memory devices with a capacity of 512k x 32/36 bits or larger are used. In all other cases J10 remains open.
1+4, 2+3		32k x 32/36 bits per device, (J10 open)
3+6, 5+8		64k x 32/36 bits per device, (J10 open)
5+6, 7+8		128k x 32/36 bits per device, (J10 open)
4+7, 8+9		256k x 32/36 bits per device, (J10 open)
6+9		512k x 32/36 bits per device, (J10 closed)
Package Type		OR in SMD 0402
1+2 2+3	X	 J19 selects the supply voltage (VPD or VDDL) of the serial memory. VPD is used in the case that a serial SRAM, which requires buffering of its memory contents, populates the module. For EEPROM and FRAM memory VDDL is used as these memory devices are non-volatile VPD is used to supply the serial memory at U8. VDDL is used to supply the serial memory at U8.
Package Type		0R in SMD 0402
J20, J21		J20 and J21 serve to configure the CAN transceiver of both TouCAN channels on the MPC555. 82C250 (or compatible) devices are used as transceivers. The CAN signal rise time can be configured via a resistor tied to GND. With a 0R bridge against VDDH, the transceivers can be switched to stand-by mode.
1+2 1+2 2+3	Х	OR resistor: minimal rise time To reduce electromagnetic interference (EMI) a suitable size resistor can populate the module in support of lower CAN baud rates. OR resistor: Stand-by
Package Type		SMD 0402

Table 2:Jumper Settings

¹: Jumper J10 and J18 might vary because of different memory on the phyCORE-MPC555

4 Power System and Reset Behavior

The phyCORE-MPC555 must be supplied with two different supply voltages:

Supply Voltage 1: +3.3 V (VDDL) Supply Voltage 2: +5 V (VDDH)

Caution:

Both supply voltages are necessary for the correct functioning of the phyCORE-MPC-555. Never attach a singel supply voltage to the phyCORE-MPC555. This might render the board inoperable.

The power supplies are connected to the module via two field effect transistors (FET). These FET switches can be switched off via software using the TEXPS bit found in the PLPRCR register. This supports the MPC555's "Power Down" power savings mode. *Figure 7* depicts the generation and the distribution of the supply voltages.

Figure 7: Power Concept

Power-On Behavior

When both supply voltages are attached to the corresponding ports of the module, a power-on reset (/PORESET) cycle will start. After successful completion of this cycle (/PORESET inactive), the hardreset cycle is triggered. During the hard-reset cycle, the FET switch is automatically activated in order to set up the local supply voltages, VDDH and VDDL. The /HRESET cycle is fully completed when both local voltages have reached a valid level and the /HRESET timeout (ca. 25 ms) of the reset device has finished. The processor is now fully functional and will start program execution with the commands given at the reset exception (0x00000100 or 0xFFF00100).

Power-Off Behavior

If the power-down mode of the MPC555 has been programmed, the bit/signal TEXPS/TEXP will turn off the FET switches. The local supply voltages, VDDH and VDDL, will drop and the board will remain without current. Only the components in the MPC555 that control this mechanism are still supplied with power (direct from the +3.3 V input). The power consumption is reduced to a minimum. /PORESET and /HRESET remain inactive (high) during this state.

Wake-Up Behavior

After an event that negates the TEXP signal, the FET switch is activated again and the /HRESET cycle will start. Such an event can include a decrementor overflow, etc. A renewed /PORESET cycle will not run. Therefore the wake-up time of the processor depends only upon the /HRESET cycle. Events that do not originate from the MPC555 can also trigger a wake-up. Such events may include an alarm interrupt of the on-board Real-Time Clock (U10, RTC8563) or a low-level at the /WAKEUP port (pin X1C56 of the phyCORE-Connector). The alarm interrupt (/IRTC) must either be connected to the /WAKEUP signal of the board, via jumper J15, or brought back externally (pin X1D33 connected to pin X1C56). Even if the /IRTC is connected to /WAKEUP, additional input sources may be connected. For additional input sources, a wired-OR-connector (open-drain or open-collector transceiver) against GND is required.

5 Start-up System Configuration

The system configuration is done in multiple phases. This section describes the mechanism that is active up until execution of the initial software command.

Power-on Reset Phase Hard-reset Phase Initialization via software

5.1 Power-On Reset Phase

The processors clock generator is configured during the power-on reset phase. Solder jumpers J2, J3, and J4 are used to configure the clock mode. Depending on the desired clock source, a corresponding bit-pattern must be present at the processor lines MODCK[1..3] during the /PORESET phase. Because these signals are multiplexed with the interrupt inputs /IRQ5, /IRQ6, and /IRW7, no external hardware may interfere with these signals.

J2	J3	J4	Clock Mode
1 + 2	2 + 3	2 + 3	20 MHz quartz, limp mode activated
			(MODCK[13]=011)
1 + 2	1 + 2	2 + 3	20 MHz quartz, limp mode deactivated
			(MODCK[13]=001)
1 + 2	2+3	1 + 2	4 MHz quartz, limp mode activated
			(MODCK[13]=010)

Table 3:Clock Mode Configuration via Jumpers J2, J3 and J4

5.2 Hard Reset Configuration Word

The components of the MPC555 which are necessary for accessing and executing of the start-up code are initialized during the hard-reset phase. A data value, the hard-reset configuration word (HRCW), determines the initialization process. The HRCW can be supplied by various sources. Possible sources are the data bus, the internal (on-chip) Flash memory or an internal default data value.

The sources for the HRCW is determined by two conditions: setting of jumper J5 and the /HC bit in the internal Flash memory.

External HRCW

When the /HC bit in internal Flash memory is cleared (/HC=1) and J5 is closed at 1+2, the HRCW is read via the data bus. On the phyCORE, the data bus is connected with pull-down resistors (except D20). The signal level of D20 is configured to low or high via jumper J1. D20 determines the Flash memory that is active after reset (1+2 = internal Flash, 2+3 = external Flash).

Internal Default HRCW

If J5 is closed at 2+3 and /HC = 1 (Flash is cleared), then the internal default HRCW 0x00000000 is read.

Internal Flash HRCW (CMFCFIG)

If J5 is closed at pins 2+3 and /HC=0, the bit pattern (CMFCFIG) from the internal Flash is read.

6 System Memory

Two memory models can be distinuished when using the phyCORE-MPC555: the memory model that is active after reset and the runtime model. The runtime model is configurable by software.

6.1 Memory Model after Reset

The memory model after reset is defined through a special mechanism. While /HRESET is active, the memory model, as well as several other system configurations, are determined by the Hard Reset Configuration Word (HRCW).

Figure 8: Default Memory Model after Hardware Reset

• Starting from external memory controlled by /CS0

Configuration: J1=2+3 (FLEN bit in HRCW is zero)

After a reset, the address space for /CS0 is pre-initialized to 1 MB and begins from the absolute address $0x0000\ 0000$. If the capacity of the external Flash memory exceeds 1 MB, the address mask in the OR0-register can be changed. Starting at address $0x002F\ 8000$ the internal resources reside. The base address of the internal resources can be changed in the IMMR-register. There are seven configurations, as shown in *Figure 8*.

After reset the processor run code from the Reset Exception Location at address 0x0000 0100.

It is also possible to map the external Flash memory into a completely different address space. This is dependent on the application and is further determined by the runtime memory model.

• Starting from internal Flash memory

Configuration: J1=1+2 (FLEN bit in HRCW is one)

After reset the internal Flash memory array is present from the absolute address 0x0000 0000. In this case Chip-Select channel 0 (/CS0) is disabled. During runtime, /CS0 can be re-enabled by software. The processor run code starting from the Reset Exception Location starting at 0x0000 0100.

6.2 Runtime Memory Model

The runtime memory model is configured by software in the internal register of the MPC555. A register set (BRx, ORx register) exists for each Chip-Select signal. In these registers, the base address, the size of the address space and the bus characteristic are configured.

/CS0	external on-board Flash memory
/CS1	external on-board synchronous BURST-SRAM
/CS2	free
/CS3	free

The runtime memory model is dependent on the application. *Table 4* shows example configurations.

Address Space	Space	Peripheral	MPC555 Register
0x0000 0000	448kByte	MPC555 on-chip	IMMR[FLEN] = 1b
0x0006 FFFF		Flash	IMMR[ISB]=000b
0x002F C000		MPC555 Periphery	IMMR[ISB]=000b
0x002F FFFF			
0x0000 0000	8 MByte	/CS0	IMMR[FLEN] = 0b
0x007F 0000		on-board Flash	BR0= 0x0000 0003
			OR0= 0xFF80 0020
0x1000 0000	8 MByte	/CS1	$BR1 = 0x1000\ 0001$
0x007F FFFF		on-board SRAM	OR1= 0xFF80 0000
0x2000 0000	16 MByte	/CS2	BR2= 0x2000 XXXX
0x20FF FFFF		free	OR2= 0xFF00 XXXX
0x3000 0000	16 MByte	/CS3	BR3= 0x3000 XXXX
0x30FF FFFF		free.	OR3= 0xFF00 XXXX

Table 4:Runtime Memory Map

The Flash memory space in *Table 4* is either external or internal dependent on the FLEN bit.

The register values for /CS2 and /CS3 depend on the connected peripherals. The places designated with an "X" determine the specific characteristics (bus-width, burst or non-burst, etc.) of the bus interface.

6.3 Flash Memory

6.3.1 Internal Flash Memory of the MPC555

To program the internal Flash memory of the MPC555, the on-chip Flash must first be unlocked with the EPEE signal. EPEE can be contacted via the pin X1D53 in the connector lining the edge of the module. EPEE is tied via a pull-down resistor to ground. This signal must be pulled to high for activation. Also EPEE controls switching of the internal Flash's supply voltage from VDDL to VDDH.

6.3.2 External Flash Memory (U2, U3)

Use of Flash as non-volatile memory provides the advantages of modern Flash technology. Various Flash devices can be used on the phyCORE-MPC555. The Flash memory devices used on the phyCORE-MPC555 operate in 16-bit mode and are organized in 32-bit with. The device at U2 connects to the low data bus while device U3 connects to the high data bus.

Туре	Size	Manufacturer	Device	Manufacturer
			Code	Code
29LV200T/B	256 kByte	AMD	223B/22BF	01
29LV200T/B	256 kByte	Fujitsu	223B/22BF	04
29LV200T/B	256 kByte	ST	0051/0057	20
29LV400T/B	512 kByte	AMD	22B9/22BA	01
29LV400T/B	512 kByte	Fujitsu	22B9/22BA	04
29LV400T/B	512 kByte	ST	00EE/00EF	20
29LV800T/B	1 MB	AMD	22DA/225B	01
29LV800T/B	1 MB	Fujitsu	22DA/225B	04
29LV800T/B	1 MB	ST	00D7/005B	20
29LV160T/B	2 MB	AMD	22C4/2249	01
29LV160T/B	2 MB	Fujitsu	22C4/2249	04
29LV160T/B	2 MB	ST	22C4/2249	20

 Table 5:
 Flash Memory Device and Manufacturers Overview

Use of Flash memory enables in-circuit programming of the module. The Flash devices on the phyCORE-MPC555 are programmable at 3.3 VDC. Consequently, no dedicated programming voltage is required. As of the printing of this manual, Flash devices generally have a life expectancy of at least 100,000 erase/program cycles.

6.4 Synchronous BURST-SRAM (U4 – U7)

Use of synchronous flow-through BURST-SRAM supports the fastest MPC555 memory interface mode. The memory is organized in 32-bit width consisting of four banks. These banks appear to the processor as linear address spaces and do not require special activation. The SRAM is generally accessed via /CS1 without wait states.

The phyCORE-MPC555 can be populated with memory devices of various capacities. Generally, each memory bank can only be populated with memory devices of a consistent size. Configuration of the memory capacity is carried out by hardware using solder jumpers J10 and J18. *Table 6* shows all possible memory configurations.

Capacity	Туре	Device	J18	J10
	-	-	-	-
128 kByte	32k x 32/36 bit	U4	1+4, 2+3	open
256 kByte	32k x 32/36 bit	U4-5	1+4, 2+3	open
	64k x 32/36 bit	U4	3+6, 5+8	open
384 kByte	32k x 32/36 bit	U4-6	1+4, 2+3	open
512 kByte	32k x 32/36 bit	U4-7	1+4, 2+3	open
	64k x 32/36 bit	U4-5	3+6, 5+8	open
	128k x 32/36 bit	U4	5+6, 7+8	open
768 kByte	64k x 32/36 bit	U4-6	3+6, 5+8	open
1 MB	64k x 32/36 bit	U4-7	3+6, 5+8	open
	128k x 32/36 bit	U4-5	5+6, 7+8	open
	256k x 32/36 bit	U4	4+7, 8+9	open
1.512 MB	128k x 32/36 bit	U4-6	5+6, 7+8	open
2 MB	128k x 32/36 bit	U4-7	5+6, 7+8	open
	256k x 32/36 bit	U4-5	4+7, 8+9	open
	512k x 32/36 bit	U4	6+9	closed
3 MB	256k x 32/36 bit	U4-6	4+7, 8+9	open
4 MB	256k x 32/36 bit	U4-7	4+7, 8+9	open
	512k x 32/36 bit	U4-5	6+9	closed
6 MB	512k x 32/36 Bit	U4-6	6+9	closed
8 MB	512k x32/36 bit	U4-7	6+9	closed

 Table 6:
 Memory Options for the Synchronous BURST-SRAM

Caution:

The address space for the memory bank must always be configured to the maximum possible memory space. That means that if, for example, only one memory device with 256k x 32/36-bit capacity is populated, the address space has to be set to 4 MByte.

6.5 Serial Memory (U8)

The phyCORE-MPC555 is populated with a non-volatile memory device with a serial I^2C interface. This memory serves as storage for configuration data or parameters that must be protected in the event of a power failure. Various serial memory devices can be installed at U8, including EEPROM, FRAM, or SRAM. The capacity of these memory devices ranges from 512 Byte to 32 kByte.

When using SRAM at U8, solder jumper J19 must be connected at pins 1+2 to supply the memory device via VPD. Because the MPC555 has no I²C interface, this protocol must be generated with software. The processor's port pins SGPIOC6 and SGPIOC7 are connected to SDA and SCL using resistors R39 and R38 per default. *Table 7* gives an overview of the possible devices for use at U8 as of the printing of this manual.

Туре	Size	I ² C	Address	Write	Life of	Device	Manufacturer
		Frequency	Pins	cycles	Data		
EEPROM	256/512	400 kHz	A2, A1,	1 000 000	100	CAT24WC02/04	CATALYST
	Byte		A0		Years		
	1/2 kByte	400 kHz	A2, A1,	1 000 000	100	CAT24WC08/16	CATALYST
			A0		Years		
	4/8 kByte	400 kHz	A2, A1,	1 000 000	100	CAT24WC32/64	CATALYST
	-		A0		Years		
	32 kByte	1 MHz	A1, A0	100 000	100	CAT24WC256	CATALYST
					Years		
FRAM	512 Byte	1 MHz	A2, A1	10 billion	10	FM24CL04	RAMTRON
					Years		
	8 kByte	1 MHz	A2, A1,	10 billion	10	FM24CL64	RAMTRON
			A0		Years		
SRAM	256 Byte	100 kHz	A2, A1,	-	-	PCF8570	PHILIPS
			A0				

Table 7:Memory Options for the Serial Memory U8

Note that the RTC is also connected to the I^2C bus. The RTC can operate with a bus frequency up to 400 kHz. It is advised not to allow higher bus frequency for the access to serial memory. The RTC has the I^2C bus slave address 0xA2 / 0xA3. The slave address of the serial memory can be configured via solder jumpers J16 (A1) and J17 (A2) in a manner that avoids signal collision. The address input A0 is hardwired to GND.

Figure 9: I^2C Slave Address of the Serial Memory (U8)

Below are possible configurations:

I ² C Address	J16	J17
	A1	A2
0xA0 / 0xA1	1 + 2	2 + 3
0xA4 / 0xA5	2+3	2 + 3
0xA8 / 0xA9	1 + 2	1 + 2
0xAC / 0xAD	2 + 3	1 + 2

Table 8: I^2C Address of the Serial Memory

When selecting the I^2C slave address of the serial memory, please note that not all memory types make address pins A1 and A2 externally available to the user.

7 Serial Interfaces

7.1 RS-232 Interface

dual-channel **RS-232** transceiver is located Α on the phyCORE-MPC555 at U11. This device adjusts the signal levels for the RXD1_TTL / RXD2_TTL and TXD1_TTL / TXD2_TTL lines. The RS-232 interface enables connection of the module to a COMport on a host-PC. In this instance the RxD1 or RxD2 line (X1D22 / X1C21) of the transceiver are connected to the TxD line of the COMport; while the TxD1 or TxD2 line (X1D23 / X1C23) are connected to the RxD line of the COM port. The ground circuitry of the phyCORE-MPC555 must also be connected to the applicable ground pin on the COM port.

The micrcontroller's on-chip UART does not support handshake signal communication. However, depending on user needs, hand shake communication can be replicated using port pins on the microcontroller. Use of an RS-232 signal level in support of handshake communication requires use of an external RS-232 transceiver not located on the phyCORE module.

It is furthermore possible to externally use the TTL signals of both of the UART channels. These are located at X1C53, X1C54 (RXD2_TTL, TXD2_TTL) and X1D16, X1D15 (RXD1_TTL, TXD1_TTL) on the phyCORE-Connector. External connection of TTL signals is required for galvanic decoupling of the interface signals. Using solder jumpers J13 and J14, the TTL transceiver outputs of the on-board RS-232 devices can be disconnected from the receive lines RXD1_TTL and RXD2_TTL. This is required so that the external transceiver does not drive against the on-board transceiver. The transmit lines TXD1_TTL / TXD2_TTL can be connected parallel on the transceiver input without causing a collision.

7.2 CAN Interface

CAN transceivers (82C251 or 80C250) populate Two the phyCORE-MPC555 module at U12 / U13. These transceivers enable transmission and receipt of CAN signals via A_CNTx0 / A_CNRX0 and B_CNTx0 / B_CNRX0. The CAN transceivers support up to 1 Mbaud and up to 110 nodes on a single CAN bus. Data transmission occurs with differential signals between CANH and CANL. A ground connection between nodes on a CAN bus is not required, yet is recommended to better protect the network from electromagnetic interference (EMI). Additionally, the common mode voltage of both CAN transceivers must not exceed a certain threshold: -8V / +18V for the 82C250 and $\pm 40V$ for the 82C251. If these thresholds cannot be adhered to, a galvanized decoupler must be installed. This is furthermore recommended for all large CAN networks. To decouple signals, the lines A_CANRX0 and B_CANRX0 must be disconected from the on-board transceiver ICs by means of jumpers J11 and J12. In order to ensure that the CAN transceivers do not use any unnecessary power, both can be switched to stand-by utilizing jumpers J20 and J21 (J20 / J21=2+3). The CAN TTL signals are routed to the pins of the phyCORE-Connector at X1D55, X1D56 (B_CNTX0, B_CNRX0) and X1D57, X1D58 (A_CNTX0, A_CNRX0)

A fast opto-coupler should be implemented to galvanically separate external CAN transceivers and the phyCORE-MPC555. It is recommended to use a Hewlett Packard HCPL06xx or a Toshiba TLP113 fast opto-coupler. Parameters for configuring a proper CAN-bus system are found in the DS102 norms from the CiA¹ (CAN in Automation) User and Manufacturer's Interest Group.

In order to ensure proper message transmission via the CAN bus, a 120 Ohm terminating resistor must be connected to each end of the CAN bus between the pins delivering the CAN_H and CAN_L signals.

¹ CiA CAN in Automation -.Founded in March 1992, CiA provides technical, product and marketing information with the aim of fostering Controller Area Network's image and providing a path for future developments of the CAN protocol.

Configuration of the on-board transceiver:

Using jumpers J20 and J21, the transceivers at U12 and U13 can be switched to stand-by (2+3). Furthermore it is possible to configure the rise time using resistors to close both jumpers at 1+2 (leaving 2+3 open). With the usage of lower baud rates, this achieves a decrease of noise emissions on the CAN bus. Further information can be found in the data sheets for the Philips 82C250 / 82C251 transceiver chips.

7.3 BDM-Debug Interface

The MPC555 offers an on-chip Background Debug (BDM) interface. This interface allows external debug access to the controller without requiring any service software or firmware, such as a monitor program, on the chip. This internal debug interface furthermore contains hardware features supporting use with common cross development systems and debug environments, such as Metrowerks' CodeWarrior. For instance, the MPC555 features internal breakpoint registers enabling debugging in Flash-ROM memory.

The on-chip BDM interface extends from the MPC555 processor to the Molex connectors aligning the edges of the phyCORE module. External BDM signal converter circuitry, such as a Wiggler, enable connection of the MPC555 to a host-PC for purposes of debugging and code download. Please note that the Development Board for the phyCORE-MPC555 contains such BDM signal converter circuitry, through which decoded BDM signals are routed to a DB-25 connector at P1. This enables easy connection of the phyCORE-MPC555, as mounted on a Development Board, to a host-PC for start-up, download of user code and debugging.

In addition, the original BDM signals from the MPC555 processor are available on a 10-pin header connector at X4 on the phyCORE-MPC555 Development Board. Connection to other 3^{rd} party BDM devices is possible using this BDM connector (*refer to Figure 10*).

Figure 10 shows the pin assignment for the 10-pin BDM connector X4 on the phyCORE-MPC555 Development Board.

phyCORE Pin		BDM Connector					phyCORE Pin	
X1D36	VFLS0	1	0	0	2	/SRESET	X1C10	
X1C32	GND	3	0	0	4	DSCK	X1C35	
X1D34	GND	5	0	0	6	VFLS1	X1D37	
X1D10	/HRESET	7	0	0	8	DSDI	X1C33	
Х	VCC	9	0	0	10	DSDO	X1D35	

Figure 10: 10-pin BDM Connector and Corresponding Pins of the phyCORE-Connector

X The supply voltage for the external BDM converter depends on the type used. *For additional information, please refer to the accompanying data sheet of the converter.*

8 Real-Time Clock RTC-8564 (U10)

The phyCORE-MPC555 is equipped with a Real-Time Clock. This RTC device provides the following features:

- Serial communication over the I²C bus (address 0xA2) up to 400 kHz bus cycles
- Power consumption I^2C bus active (400 kHz):
 I^2C bus inactive, CLKOUT pin inactive : <1 μ A
- Clock function with four year calendar
- Century bit for year 2000-compliance
- Universal timer with alarm and overflow indication
- 24-hour format
- Automatic word address incrementing
- Programmable alarm, timer and interrupt functions

If the phyCORE-MPC555 is equipped with a battery (VBAT), the Real-Time Clock runs independently of the board's power supply.

Programming the Real-Time Clock is done via the I^2C bus (address 0xA2 / 0xA3) with the help of ports SGPIOC7 (SCL) and SGPIOC6 (SDA). In standard configuration, these processor port pins are connected to the I^2C bus using the 100 Ohm resistors R38 and R39. Since the MPC555 is not equipped with an internal I^2C controller, the protocol must be generated with software.

The Real-Time Clock also provides an interrupt output that is extended to the /WAKEUP signal via Jumper J15. An interrupt occurs in case of a clock alarm, timer alarm, timer overflow and event counter alarm. It has to be cleared by software. With the interrupt function the Real-Time Clock can be utilized in various applications. Closing Jumper J15 allows timed controlled wake-up of the phyCORE-MPC555, including start-up and operation out of powerdown mode.

phyCORE-MPC555

If the RTC interrupt should be used as a software interrupt which is connected to the corresponding interrupt input of the processor, the signal /IRTC must be externally connected with a processor interrupt input.

Additional information on the Real-Time Clock registers can be found in the accompanying RTC data sheet.

Caution:

After connection of the voltage supply or following a reset, the Real-Time Clock generates **no** interrupts, as the clock must first be initialized.

9 Technical Specifications

The physical dimensions of the phyCORE-MPC555 are represented in *Figure 11*.

Measurements are in mm

Figure 11: Physical Dimensions

The height of all components on the top side of the PCB is ca. 4.5 mm. The PCB itself is approximately 1.25 mm (+/-10%) thick¹. The Molex connector pins are located on the underside of the PCB, oriented parallel to its two long sides. The maximum height of components on the underside of the PCB is 2 mm.

Additional	Technical	Data:
------------	-----------	-------

Parameter	Requirements	Characteristics
Dimensions		72 mm x 57 mm
Weight		ca. 25 g with max. memory
Humidity		max. 95 % r.F. not
		condensed
Storage Temp. Range		-40° to $+90^{\circ}$ C
Operating Temp.		
Range:		
Standard		0 °C to +70 °C
Extended		-40 °C to +90 °C
Operating voltages:		
Voltage 3.3V		3.3 V ± 5 %
Voltage 5V		5 V ± 5 %
Battery		VBAT: 3 V-10 %
Operating Power	40 MHz frequency	
Consumption:		
Voltage 3.3V	1 MByte SRAM	Typ. 300 mA
Voltage 5V	512 kByte Flash	Typ. 40 mA ²
Voltage 3.3V	4 MByte SRAM	Typ. 620 mA
Voltage 5V	4 MByte Flash	Typ. 40 mA ²
Battery power supply:	VBAT = 3 V	Less than 10 µA
RTC and internal	Voltage 5 V $= 0$ V	
SRAM in MPC555	Voltage 3.3 $V = 0 V$	

Table 9:Technical Data

These data apply to the standard configurations at the time of printing of this manual.

¹: Applies to all PCBs 1169.2 and higher. PCB thickness for earlier PCB versions was 1.1 mm.

²: Without I/O access and load of MIOS, TPU, ADC etc.

Connectors on the phyCORE-MPC555:

Contact rows on the module:

Manufacturer:	Molex
Number of pins per contact rows:	160 (2 rows of 80)
Molex part number:	52760-1679 (lead free)
PHYTEC part number:	VM042

The Molex connectors mating with the ones populating the phyCORE-MPC555 are available in two different sizes. The mated height given describes the distance between the two PCBs they connect.

• Component height 5 mm, mated height 6 mm

Number of pins per contact row:	160 (2 rows of 80)
Molex part number:	55091-1679 (lead free)
PHYTEC part number:	VB082

• Component height 9 mm, mated height 10 mm

Number of pins per contact row	160 (2 rows of 80)
Molex type number	53553-1679 (lead free)
PHYTEC part number:	VB085

The corresponding mechanical diagrams of the contact elements can be found at www.molex.com.

In order to accurately calculate the free space available given the spacing over the PCB provided by the Molex connectors, the maximum height of the components on the underside of the phyCORE must be subtracted from the profile of the Molex connectors. For instance, a 10 mm high Molex connector yields 8 mm of space (10 mm less 2 mm) between the phyCORE-MPC555 and target circuitry into which it is integrated.

10 Hints for Handling the Module

Handling of the quartz on the phyCORE-MPC555

Removal of the standard quartz is not advisable given the compact nature of the module. Should this nonetheless be necessary, please ensure that the boards as well as surrounding components and sockets remain undamaged while unsoldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

Integrating the phyCORE-MPC555 in Application Circuitry

Successful integration in user target circuitry depends on whether the layout for the GND connections matches those of the phyCORE module. It is recommended that the target application circuitry is equipped with one layer dedicated to carry the GND potential. In any case, be sure to connect all GND pins neighboring signals that are used in the application circuitry. For the supply voltage, there must be contact with at least six of the GND pins neighboring the supply voltage pins.

11 Revision History

Date	Version numbers	Changes in this manual
11-Dec-2000	Manual L-523e_1 PCM-001 PCB# 1169.0 PCM-995 PCB# 1174.0	First edition.
01-Aug-2001	Manual L-523e_2 PCM-001 PCB# 1169.0 PCM-995 PCB# 1174.0	Minor revisions regarding spelling errors and conventions. Paragraph 4 in Appendix added.
30-Apr-2003	Manual L-523e_3 PCM-001 PCB# 1169.2 PCM-995 PCB# 1174.0	Description extended to PCB# 1169.2. Major revisions in sections 6.1 and 6.2. Paragraph 2 and 3 in Appendix have been revised. This revision history table added.
12-Feb-2004	Manual L-523e_4 PCM-001 PCB# 1169.5 PCM-995 PCB# 1174.1	Top and bottom view to match PCB# 1169.5 inserted, section <i>1.2</i> Pinout <i>Table 1</i> adjusted to match PCB# 1169.5. Table 7 for serial memory (U8) and <i>Table 9</i> in Technical Specifications revised.
04-July-2005	Manual L-523e_5 PCM-001 PCB# 1169.5 PCM-995 PCB# 1174.1	Section 9, "Technical Specifications" PCB thickness corrected and Molex part numbers adjusted to lead free version.

Appendices A

A.1 Release Notes

The following section contains infomation about deviations to the description in this manual.

Changes in revision: PCB1169.0 through 1169.5

1. If the GAL P640 is installed, the function of Jumpers J2, J3, J4 and J5 is different to what's described in *section 3*:

J5, J3, J4		These jumpers configure the clock mode of the MPC555. During the active phase of /PORESET, the bit pattern available on the MODCK [13] pins is read by the MPC555 processor. Only the standard configurations using the MPC555's oscillator and quartz are shown below. The default configuration depends on the frequency of the external quartz populating the module. Configuration options for using an external clock source can be found in the MPC555 user's manual.
1+2, 2+3, 2+3	Х	20 MHz Quartz, limp-mode activated
1+2, 1+2, 2+3		20 MHz Quartz, limp-mode deactivated
1+2, 2+3, 1+2		4MHz Quartz, limp-mode activated (MODCK[13]=010)
Package Type		0R in SMD 0402
J2		J2 determines the source of the Hard Reset Configuration Word (HRCW). During /HRESET, the HRCW configures the MPC555 processor.
1+2	Х	The HRCW is read via the data bus. Except D20, the data bus is connected to pull-down resistors and accordingly guarantees a valid data word. J1 configures D20 and determines the internal or external Flash memory as boot code source.
2+3		The internal default word is read as HRCW
Package Type		0R in SMD 0402

- 2. The power-down feature is currently not supported due to a problem with the MPC555 processor.
- 3. None of the PCB revisions supports the ready/busy function on /IRQ5 (MODCK1). If the /IRQ5 is to be controlled externally using push button S5 of the Development Board PCM-995, then R37 must be removed.

Index

/

/WAKEUP Signal25, 2	29
A	
Alarm Interrupt Output	25
В	
BDM Connector	47
BDM Debug Interface	46
BRx	35

С

E

EEPROM, Serial	40
EMC	1
ESD	1

F

Features	2
Flash Memory	23, 36
On-Board	
On-Chip	
FRAM, Serial	40
G	
GND Connection	53

Η

Hard Rest	
Configuration Word	32
Hints for Handling the	
Module	53

Ι

I ² C Bus	25
Frequency	40
I ² C Interface	40
Introduction	1

J

J2	56
J3	
J4	
J5	56

M

Memory Banks	38
Memory Configuration	.24, 26
Memory Model	
After Reset	33
Runtime	35
MODCK	31
Molex	52

0

```
ORx.....35
```

P

P640	56
Pin Description	7
Pinout	19
PLPRCR	28
Power Savings Mode	28
Power Supply	
Internal SRAM	23

phyCORE-MPC555

Power System	28
Power-Off Behavior	29
Power-On Behavior	29
Power-On Reset	31

Q

Quartz	23,	56
--------	-----	----

R

Real-Time Clock	48
Reference Voltage	23
Reset Behavior	28
RS-232	
TTL Signals	25
RS-232 Interface	44
RTC	40
~	

S

Serial Interfaces	.44
Serial Memory	.40
SMT Connector	7

Solder Jumpers20
SRAM, Serial40
Start-up System
Configuration
Supply Voltage
Serial Memory26
Supply Voltage28
Synchronous BURST-SRAM 38
System Configuration31
System Memory
Τ
Technical Specifications50
Terminating Resistor45
TEXPS

U

U840)
W	
Wake-Up Behavior29)

Document:	phyCORE-MPC555	
Document nu	umber: L-523e_5, July 2005	
How would y	ou improve this manual?	
Did you find	any mistakes in this manual?	page
Submitted by Customer nur	y: nber:	
Name:		
Company:		
Address:		
Return to:	PHYTEC Technologie Holding AG Postfach 100403 D-55135 Mainz, Germany Fax : +49 (6131) 9221-33	

Published by

© PHYTEC Meßtechnik GmbH 2005

Ordering No. L-523e_5 Printed in Germany