

EDITION APRIL 2009

A product of a PHYTEC Technology Holding company

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark (TM) and copyright (CD) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2009 PHYTEC Messtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Messtechnik GmbH.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (800) 0749832 order@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Web Site:	http://www.phytec.de	http://www.phytec.com

Preliminary Edition April 2009

1	Pref	face	1
	1.1	Introduction	3
	1.2	Block Diagram	4
	1.3	View of the nanoMODUL-STM32F103	5
2	Pin	Description	7
3	Jum	ıpers	13
4	Pow	ver Requirements	16
5	Syst	tem Memory	17
	5.1	Memory Model	18
	5.2	External SRAM (U2)	19
	5.3	I ² C EEPROM (U6)	20
		5.3.1 Setting the EEPROM Lower Address	
		Bits (J7, J8, J9)	21
		5.3.2 EEPROM Write Protection Control (J6)	22
	5.4	RS-232 Transceiver (U5)	23
6	JTA	G Interface (X1)	25
7	Tecl	hnical Specifications	26
8	nan	oMODUL-STM32F103 Baseboard	27
Inde	X		29

Index of Figures

Figure 1:	Block Diagram of the nanoMODUL-STM32F1034
Figure 2:	Top view of the nanoMODUL-STM32F103 (controller side)5
Figure 3:	Bottom view of nanoMODUL-STM32F103 (connector side)6
Figure 4:	Pin-out of the nanoMODUL-Connector (top view, with cross section insert)8
Figure 5:	Typical jumper pad numbering scheme13
Figure 6:	Jumper locations (top view)14

Index of Tables

Table 1:	Pin-out of the nanoMODUL-Connector	9
Table 2:	Jumper settings	15
Table 3:	EEPROM I ² C address via J7, J8 and J9	21
Table 4:	EEPROM write protection states via J6	22

© PHYTEC Messtechnik GmbH 2009 L-733-e_0

1 Preface

This hardware manual describes the nanoMODUL-STM32F103's design and function. Precise specifications for the ST STM32F103ZE microcontrollers can be found in the enclosed microcontroller Data Sheet/User's Manual.

In this hardware manual and in the attached schematics, active low signals are denoted by a "/" or "#" preceding the signal name (e.g.: /RD or #RD). A "0" indicates a logic zero or low-level signal, while a "1" represents a logic one or high-level signal.

Declaration of Electro Magnetic Conformity of the PHYTEC nanoMODUL-STM32F103

PHYTEC Single Board Computers (henceforth products) are designed for installation in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Caution:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header row connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

The nanoMODUL-STM32F103 is one of a series of PHYTEC nano-/micro-/miniMODULs which can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports a variety of 8-/16- and 32-bit controllers in two ways:

(1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform

(2) as insert-ready, fully functional phyCORE OEM modules, which can be embedded directly into the user's peripheral hardware design.

PHYTEC's microcontroller modules allow engineers to shorten development horizons, reduce design costs and speed project concepts from design to market. For more information go to:

http://www.phytec.com/services/phytec-advantage.html

1.1 Introduction

The nanoMODUL-STM32F103 offers the following features:

- Single Board Computer in the size 38 x 47 mm achieved through modern SMD technology
- populated with the STMicroelectronics STM32F103ZE microcontroller (BGA-144 packaging)
- improved interference safety achieved through multi-layer PCB technology and dedicated Ground pins
- controller signals and ports extend to two 60-pin 1,27 mm Samtec connectors aligning two sides of the board, enabling it to be plugged like a "big chip" into target application
- max. 72 MHz clock frequency
- 512 kByte Controller internal Flash¹
- 64 kByte Controller internal SRAM
- Up to 2 MByte external SRAM¹
- 4kB I²C EEPROM
- Up to 85 GPIOs
- 3 x 12-bit ADCs with up to 16 channels
- 2 channels 12-bit DAC
- 2,5 V external voltage reference
- USB Full Speed Client or CAN 2.0B interface
- Dual RS-232 transceiver (one for using USART1 and internal Bootloader)
- I²C, SPI, I²S, U(S)ART, SDIO
- RTC, Timer, PWM, Watchdog
- one operating voltage for core & peripherals, 3.3 V
- different low power modes
- operating temperature: -40 to 85 ℃

^{1:} Please contact PHYTEC for more information about additional module configurations.

1.2 Block Diagram

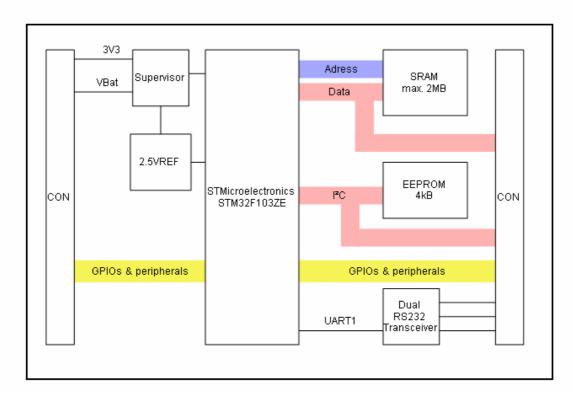
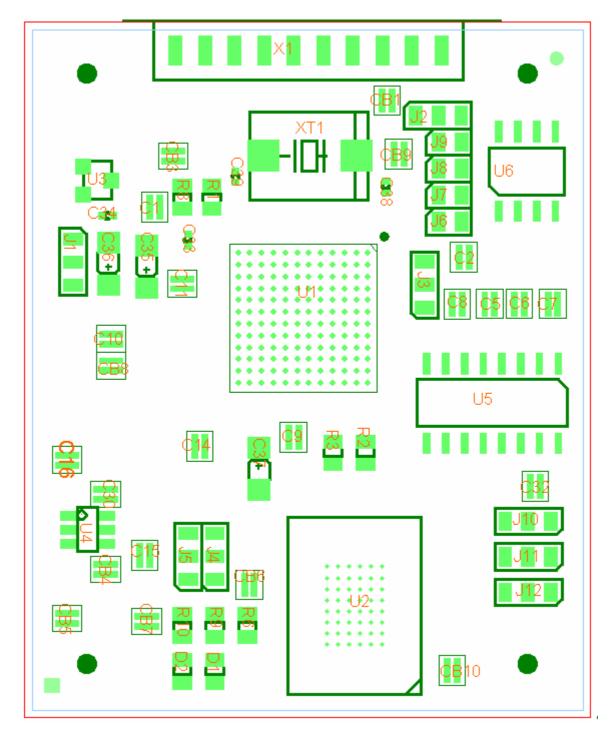



Figure 1: Block Diagram of the nanoMODUL-STM32F103

1.3 View of the nanoMODUL-STM32F103

Figure 2: Top view of the nanoMODUL-STM32F103 (controller side)

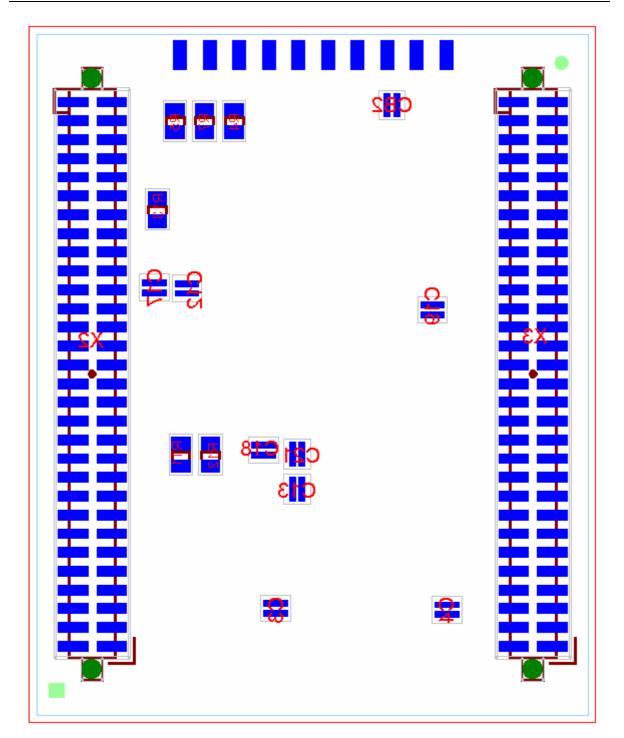
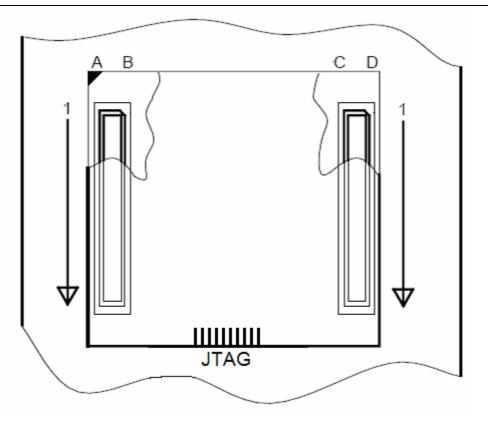


Figure 3: Bottom view of nanoMODUL-STM32F103 (connector side)

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

As *Figure 4* indicates, all controller signals extend to surface mount technology (SMT) connectors (1.27 mm) lining two sides of the module (referred to as nanoMODUL-connector). This allows the nanoMODUL-STM32F103 to be plugged into any target application like a "big chip".


The numbering scheme for the nanoMODUL-connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number. Pin 1A, for example, is always located in the upper left hand corner of the matrix. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progresses alphabetically from left to right (*refer to Figure 4*).

The numbered matrix can be aligned with the nanoMODUL-STM32F103 (viewed from above; nanoMODUL-connector pointing down) or with the socket of the corresponding nanoMODUL Development Board/user target circuitry.

The numbering scheme is thus consistent for both the module's nanoMODUL-connector as well as mating connectors on the nanoMODUL Development Board or target hardware, thereby considerably reducing the risk of pin identification errors.

Since the pins are exactly defined according to the numbered matrix previously described, the nanoMODUL-connector is usually assigned a single designator for its position (X2 for example). In this manner the nanoMODUL-connector comprises a single, logical unit regardless of the fact that it could consist of more than one physical socketed connector.

The following figure (*Figure 4*) illustrates the numbered matrix system. It shows a nanoMODUL-STM32F103 with SMT nanoMODUL-connectors on its underside mounted on a Development Board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a cross-view of the nanoMODUL showing these nanoMODUL-connectors mounted on the underside of the module's PCB.

Figure 4: Pin-out of the nanoMODUL-Connector (top view, with cross section insert)

Table 1 provides an overview of the pin-out of the nanoMODUL-connector.

Please refer to the STMicroelectronics STM32F103ZE User's Manual/Data Sheet for details on the functions and features of controller signals and port pins.

	PIN Row A					
PIN #	PIN # SIGNAL DESCRIPTION ALTERNATE FUNCTION ¹					
1A	PE0 / NBL0	Lower Byte Enable	TIM4_ETR			
2A	PD15 / D1	Databus D1	TIM4 CH4 ²			
ЗA	PD1 / D3	Databus D3	CANTX2 above ²			
4A	GND	Ground				
5A	PE9 / D6	Databus D6	TIM1_CH1 ²			
6A	PE11 / D8	Databus D8	TIM1_CH2 ²			
7A	PE13 / D10	Databus D10	TIM1_CH3 ²			
8A	PE14 / D11	Databus D11	TIM1_CH4 ²			
9A	PD8 / D13	Databus D13	USART3_TX ²			
10A	PD10 / D15	Databus D15	USART3_CK ²			
11A	GND	Ground				
12A	PA2	GPIO	USART2_TX, TIM5_CH3, ADC123_IN2, TIM2_CH3			
13A	PA4	GPIO	SPI1_NSS, DAC_OUT1, USART2_CK, ADC12_IN4			
14A	PA6	GPIO	SPI1_MISO, TIM8_BKIN, ADC12_IN6, TIM3_CH1, TIM1_BKIN ²			
15A	PA8	GPIO	USART1_CK, TIM1_CH1, MCO			
16A	R1IN	RS232 Receiver1 Input (UART1)	GPIO PA10 ³ , TIM1_CH3 ³			
17A	R2IN	RS232 Receiver2 Input				
18A	R2OUT	RS232 Receiver2 Output				
19A	GND	Ground				
20A	PA12	GPIO	USART1_RTS, CANTX, TIM1_ETR, USBDP			
21A	JTAG_TCK	JTAG Clock	GPIO PA14			
22A	PB0	GPIO	ADC12_IN8, TIM3_CH3, TIM8_CH3N, TIM1_CH3N ²			
23A	PB1	GPIO	ADC12_IN9, TIM3_CH4, TIM8_CH3N, TIM1_CH3N ²			
24A	JTAG_TRST	JTAG Test Reset	GPIO PB4, SPI3_MISO, TIM3_CH1 ² ,SPI1_MISO ²			
25A	PB6	GPIO	I2C_SCL, TIM4_CH1, USART1_TX ²			
26A	GND	Ground				
27A	PB9	GPIO	TIM4_CH4, SDIO_D5, I2C1_SDA ² , CANTX ²			
28A	PB11 / I2C2_SDA	I ² C2 serial data line	USART3_RX, TIM2_CH4 ²			
29A	PB13	GPIO	SPI2_SCK, I2S2_CK, USART3_CTS, TIM1_CH1N			
30A	PB15	GPIO	SPI2_MOSI, I2S2_SD, TIM1_CH3N			

 Table 1:
 Pin-out of the nanoMODUL-Connector

³ Can be used by setting J10/J11/J12. *Refer to section 3*

¹ Please refer to the STM32F103ZE Reference Manual and Datasheet for further information

² Remaped function, see STM32F103 Reference Manual

		Pir	N Row B		
PIN # SIGNAL DESCRIPTION ALTERNATE FUNCTION ¹					
1B	PD14 / D0	Databus D0	TIM4_CH3 ²		
2B	PD0 / D2	Databus D2	CANRX ²		
3B	PE7 / D4	Databus D4	TIM1_ETR ²		
4B	PE8 / D5	Databus D5	TIM1_CH1N ²		
5B	PE10 / D7	Databus D7	TIM1_CH2N ²		
6B	PE12 / D9	Databus D9	TIM1_CH3N ²		
7B	GND	Ground			
8B	PE15 / D12	Databus D12	TIM1_BKIN ²		
9B	PD9 / D14	Databus D14	USART3_RX ²		
10B	PA0	GPIO	WKUP, USART2_CTS, ADC123_IN0, TIM2_CH1_ETR,TIM5_CH1, TIM8_ETR		
11B	PA1	GPIO	USART2_RTS, ADC123_IN1, TIM5_CH2, TIM2_CH2		
12B	PA3	GPIO	USART2_RX, TIM5_CH4, ADC123_IN3, TIM2_CH4		
13B	PA5	GPIO	SPI1_SCK, DAC_OUT2, ADC12_IN5		
14B	PA7	GPIO	SPI1_MOSI, TIM8_CH1N, ADC12_IN7, TIM3_CH2, TIM1_CH1N ²		
15B	GND	Ground			
16B	T1OUT	RS232 Transmitter1 Output (UART1)	GPIO PA9 ³ ,TIM1_CH3 ³		
17B	T2OUT	RS232 Transmitter2 Output			
18B	T2IN	RS232 Transmitter2 Input			
19B	PA11	GPIO	USART1_CTS, CANRX, TIM1_CH4, USBDM		
20B	JTAG_TMS	JTAG Test Mode Select	GPIO PA13		
21B	JTAG_TDI	JTAG Test Data Input	GPIO PA15		
22B	GND	Ground			
23B	JTAG_TDO	JTAG Test Data Output	GPIO PB3, TRACESWO, SPI3_SCK, I2S3_CK, TIM2_CH2 ² , SPI1_SCK ²		
24B	PB5	GPIO	I2C1_SMBAI, SPI3_MOSI, I2S3_SD, TIM3_CH2 ² ,SPI1_MISO		
25B	PB7	GPIO	I2C1_SDA, FSMC_NADV, TIM4_CH2, USART1_RX ²		
26B	PB8	GPIO	TIM4_CH3, SDIO_D4, I2C1_SCL ² , CANRX ²		
27B	PB10 / I2C2_SCL	I ² C2 serial clock line	I2C2_SCL, USART3_TX, TIM2_CH3 ²		
28B	PB12	GPIO	SPI2_NSS, I2S2_WS, I2C2_SMBAI, USART3_CK, TIM1_BKIN		
29B	PB14	GPIO	SPI2_MISO, TIM1_CH2N, USART3_RTS		
30B	GND	Ground			

³ Can be used by setting J10/J11/J12. *Refer to Section 3*

¹ Please refer to the STM32F103ZE Reference Manual and Datasheet for further information

² Remaped function, see STM32F103 Reference Manual

	PIN Row C					
PIN # SIGNAL DESCRIPTION ALTERNATE FUNCTION ¹						
1C	VCC	Supply Voltage (3.3V)				
2C	VCC	Supply Voltage (3.3V)				
3C	GND	Ground				
4C	VCC	Supply Voltage (3.3V)				
5C	VBAT	Backup Voltage (3V)				
6C	BOOT0	Bootpin 0				
7C	PB2/BOOT1	Bootpin 1	GPIO PB2			
8C	GND	Ground				
9C	PC7	GPIO	I2S3_MCK, TIM8_CH2, SDIO_D7, TIM3_CH2 ²			
10C	PC9	GPIO	TIM8_CH4, SDIO_D1, TIM3_CH4 ²			
11C	PC11	GPIO	UART4_RX, SDIO_D3, USART3_RX ²			
12C	PC12	GPIO	UART5_TX, SDIO_CK, USART3_CK ²			
13C	PC14	GPIO				
14C	PD2	GPIO	TIM3_ETR, UART5_RX, SDIO_CMD			
15C	PD6	GPIO	FSMC_WAIT, USART2_RX ²			
16C	GND	Ground				
17C	PE3 / A19	Adressline 19 if 2MB SRAM is populated	GPIO PE3, TRACED0			
18C	PE5	GPIO	TRACED2			
19C	PF11	GPIO	FSMC_NIOS16			
20C	PG6	GPIO	FSMC_INT2			
21C	PG8	GPIO				
22C	PG11	GPIO	FSMC_NCE4_2			
23C	GND	Ground				
24C	PG14	GPIO	FSMC_A25			
25C	PC1	GPIO	ADC123_IN11			
26C	PC3	GPIO	ADC123_IN13			
27C	PC4	GPIO	ADC12_IN14			
28C	PF6	GPIO	ADC3_IN4, FSMC_NIORD			
29C	PF8	GPIO	ADC3_IN6, FSMC_NIOWR			
30C	AGND	Analog ground				

¹ Please refer to the STM32F103ZE Reference Manual and Datasheet for further information ² Remaped function, see STM32F103 Reference Manual

	PIN Row D				
PIN # SIGNAL DESCRIPTION ALTERNATE FUNCTION ¹					
1D	VCC	Supply Voltage (3.3V)			
2D	VCC	Supply Voltage (3.3V)			
3D	GND	Ground			
4D	VCC	Supply Voltage (3.3V)			
5D	VPD	Voltage supervisor output voltage			
6D	NRSTOUT	Reset output			
7D	NRSTIN	Reset input			
8D	PC6	GPIO	I2S2_MCK, TIM8_CH1, SDIO_D6, TIM3_CH1 ²		
9D	PC8	GPIO	TIM8_CH3, SDIO_D0, TIM3_CH3, TIM3_CH3 ²		
10D	PC10	GPIO	UART4_TX, SDIO_D2, USART3_TX ²		
11D	GND	Ground			
12D	PC13	GPIO	TAMPER-RTC		
13D	PC15	GPIO			
14D	PD3	GPIO	FSMC_CLK, USART2_CTS ²		
15D	PD7	GPIO	FSMC_NE1, FSMC_NCE2, USART2_CK ²		
16D	PE2	GPIO	TRACECK, FSMC_A23		
17D	PE4	GPIO	TRACED1, FSMC_A20		
18D	PE6	GPIO	TRACED3, FSMC_A22		
19D	GND	Ground			
20D	PG7	GPIO	FSMC_INT3		
21D	PG10	GPIO	FSMC_NCE4_2, FSMC_NE3		
22D	PG12	GPIO	FSMC_NE4		
23D	PG13	GPIO	FSMC_A24		
24D	PC0	GPIO	ADC123_IN10		
25D	PC2	GPIO	ADC123_IN12		
26D	AGND	Analog ground			
27D	PC5	GPIO	ADC12_IN15		
28D	PF7	GPIO	ADC3_IN5, FSMC_NREG		
29D	PF9	GPIO	ADC3_IN7, FSMC_CD		
30D	PF10	GPIO	ADC3_IN8, FSMC_INTR		

¹ Please refer to the STM32F103ZE Reference Manual and Datasheet for further information

² Remaped function, see STM32F103 Reference Manual

3 Jumpers

For configuration purposes, the nanoModul has 12 solder jumpers, some of which have been installed prior to delivery. *Figure 5* illustrates the numbering of the solder jumper pads, while *Figure 6* indicate the location of the solder jumpers on the board. All solder jumpers are located on the top side of the module. *Table 2* below provides a functional summary of the solder jumpers, their default positions, and possible alternative positions and functions. A detailed description of each solder jumper can be found in the applicable section listed in the table.

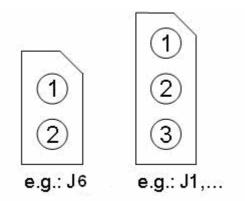


Figure 5: Typical jumper pad numbering scheme

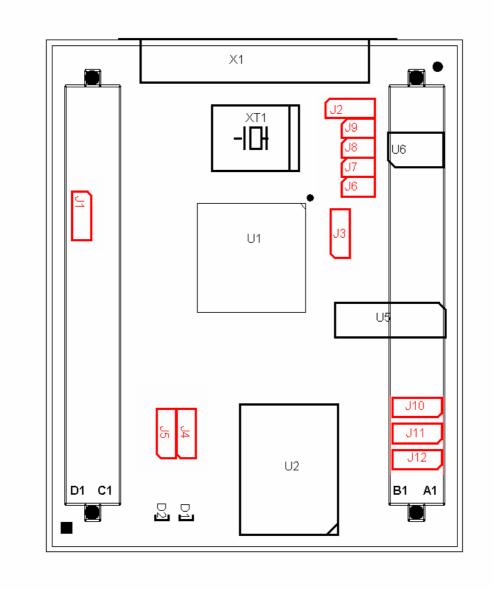


Figure 6: Jumper locations (top view)

The jumpers (J = solder jumper) have the following functions:

	DEFAULT SETTING		ALTERN	SEE	
					SECTION
J1	2+3	VRef for ADCs/DACs is 2.5V	1+2	VRef for ADCs/DACs is 3.3V	
J2	2+3	EEPROM U6 is powered by VPD (voltage supervisor output)	1+2	EEPROM U6 is powered directly by VCC	
J3	2+3	Backup voltage is VPD (voltage supervisor output)	1+2	Backup voltage is VCCµC (Mikrocontroller supply voltage, see J5)	
J4	2+3	SRAM U2 is powered by VPD (voltage supervisor output)	1+2	SRAM U2 is powered directly by VCC	
J5	2+3	Mikrocontroller U1 is powered by VPD (voltage supervisor output)	1+2	Mikrocontroller U1 is powered directly by VCC	
J6	open	EEPROM U6 is not write protected	closed	EEPROM U6 is write protected	
J7	open	EEPROM Adressbit A0 is set to 0	closed	EEPROM Adressbit A0 is set to 1	
J 8	open	EEPROM Adressbit A1 is set to 0	closed	EEPROM Adressbit A1 is set to 0	
J 9	open	EEPROM Adressbit A2 is set to 0	closed	EEPROM Adressbit A2 is set to 0	
J10 (J11)	2+3	Pin USART1_RX of the Controller is connected to RS232_Tranceiver	1+2	Pin USART1_RX of the Controller is not connected to RS232_Tranceiver	
J11 (J10)	2+3	Pin USART1_RX of the Controller is connected to RS232_Tranceiver	2+3	Pin USART1_RX of the Controller is not connected to RS232_Tranceiver	
J12	2+3	Pin USART1_TX of the Controller is connected to RS232_Tranceiver	open	Pin USART1_TX of the Controller is not connected to RS232_Tranceiver	

4 Power Requirements

The nanoMODUL-STM32F103 normally operates off of one 3.3V voltage supply denoted as VCC.

For Backup purpose there is another voltage input named VBAT.

5 System Memory

The nanoMODUL provides three types of on-board memory:

Internal SRAM: ٠

•

•

- External SRAM:
- 64Kbyte Mikrocontroller internal none, 512kByte or 2MByte external
- NAND Flash:
- I²C-EEPROM:
- 512kByte Mikrocontroller internal 4KB

5.1 Memory Model

5.2 External SRAM (U2)

The nanoMODUL-STM32F103 can be optional populated with 512kByte or 2MByte external SRAM. The SRAM is connected to de Controller over the 16-Bit wide databus. FSMC_NE2 (Pin PG9) is used as chip select signal. Thus the address space of the SRAM begins at 0x64000000.

If U2 is unpopulated then the databus signals D0-D15, NBL0 (lower byte enable) and the addressbus signal A19 can be used for other purpose e.g. as GPIOs.

If 512 kByte SRAM is populated then the addressline A19 can be used for other purpose, too.

5.3 I²C EEPROM (U6)

The nanoMODUL-STM32F103 is populated with a M24C32WMN6P non-volatile 4KByte EEPROM (U6) with an I²C interface to store configuration data or other general purpose data. This device is accessed through I²C port 2 on the nanoMODUL-STM32F103. The serial clock signal and serial data signal for I²C port 2 are made available at the nanoMODUL-connector as I2C2_SDA on pin 28A and I2C2_SCL on pin 27B.

Three solder jumpers are provided to set the lower address bits: J7, J8, and J9. *Refer to section 5.3.1 for details on setting these jumpers.*

Write protection to the device is accomplished via jumper J6. By default this jumper is opened, allowing write access to the EEPROM. Closing this jumper will cause the EEPROM to enter write protect mode, thereby disabling write access to the device. *Refer to section 3 for details on setting these jumpers.*

5.3.1 Setting the EEPROM Lower Address Bits (J7, J8, J9)

The 4KB I²C EEPROM populating U6 on the nanoMODUL has the capability of configuring the lower address bits A0, A1, and A2. The four upper address bits of the device are fixed at '1010' (*see ST M24C32 data sheet*). The remaining three lower address bits of the seven bit I²C device address are configurable using jumpers J7, J8 and J9. J7 sets address bit A0, J8 address bit A1, and J9 address bit A2.

Table 3 below shows the resulting seven bit I^2C device address for the eight possible jumper configurations.

U17 I ² C DEVICE ADDRESS	J6	J5	J4
1010 000	open	open	open
1010 001	closed	open	open
1010 010	open	closed	open
1010 011	closed	closed	open
1010 100	open	open	closed
1010 101	closed	open	closed
1010 110	open	closed	closed
1010 111	closed	closed	closed

Table 3: EEPROM I²C address via J7, J8 and J9

5.3.2 EEPROM Write Protection Control (J6)

Jumper J6 controls write access to the EEPROM (U6) device. Opening this jumper allows write access to the device, while closing this jumper enables write protection.

The following configurations are possible:

 Table 4:
 EEPROM write protection states via J6

EEPROM WRITE PROTECTION STATE	J8
Write access allowed	open
Write protected	closed

5.4 RS-232 Transceiver (U5)

One dual RS-232 transceiver supporting 120kbps data rates populates the nanoMODUL-STM32F103 at U5. This device converts the signal levels for:

• USART1_RX (PA10) /USART1_TX (PA9)

The RS-232 interface enables connection of the module to a COM port on a host-PC. In this instance the Rx line of the transceiver is connected to the Tx line of the COM port; while the Tx line of the transceiver is connected to the Rx line of the COM port. The ground potential of the nanoMODUL-STM32F103 circuitry needs to be connected to the applicable ground pin on the COM port as well.

The nanoMODUL-STM32F103 does not convert the remaining USARTs/UARTs (USART2, USART3, UART4, UART5) provided by the STM32F103ZE to RS-232 levels. The TTL level signals are made available at the nanoMODUL-connector. External RS-232 transceivers must be supplied by the user if additional UART's require RS-232 levels or the second transceiver of the dual RS-232 trainsceiver-IC can be used.

With the RS-232 Transceiver, UART1 can be used to program the internal Flash of the Mikrocontroller via the internal Bootloader.

The pins of the second RS-232 Transceiver are made available at the nanoMODUL-connector so that they can be used by external signals.

6 JTAG Interface (X1)

The nanoMODUL-STM32F103 is equipped with a JTAG interface for downloading program code into the internal flash, internal RAM or for debugging programs currently executing. The JTAG interface extends out to a 2.0 mm pitch pin header at X1 on the edge of the module PCB. All JTAG signals are also made available on the nanoMODUL-connector.

7 Technical Specifications

Additional specifications (**all TBD**):

•	Dimensions:	38.3mm x 47.1mm
•	Storage temperature:	-40 ℃ to +125 ℃
•	Operating temperature:	-40 $^{\circ}$ to +85 $^{\circ}$ (industrial)
•	Operating voltage:	VCC 2.9V to 3.6V VBAT TBD to TBDV
•	Power consumption: 60mA typical	Conditions: VCC = 3.3 V ,VBAT = 0 V, 2 MByte external SRAM,

8 nanoMODUL-STM32F103 Baseboard

nanoMODUL-STM32F103 Baseboard Technical Highlights

- Up to 12 digital inputs, 24VDC, galvanically isolated
- 6 switchable relay outputs, 250VAC, 2A
- Up to 8 high side switches, 24VDC, up to 1,9A, short circuit proof, galvanically isolated
- Up to 8 analog inputs, 0-10VDC, 12-bit
- 2 analog outputs, 0-10V, 8- or 12-bit
- USB
- CAN
- RS232
- Connector with a lot of different functions (Timer, ADC, GPIO, I²C, SPI) for different purpose such as motor driver
- Operating Voltage: 24VDC for low power domain, 24VDC for high side switches
- Board can be powered over USB for prototyping with some restrictions

Index

B

D
Block Diagram4
C
COM Port23
D
Debug Interface24 <i>Dimensions</i> 25
E
EEPROM17, 20 EEPROM Write Protection22
F
Features3
1
I ² C EEPROM 20
J
J60322 JTAG Interface24
N
NAND Flash17
0
<i>Operating Temperature</i>

P

phyCORE-connector	7, 8
Pin Description	7
Pinout	9
Power Consumption	25

R

RS-232 Interface	23
RS-232 Level	23
RS-232 Transceiver	23

5

SMT Connector	7
Storage Temperature	25
System Memory	17

7

Technical Specifications	25,	28
TTL Level		23

U

U301	
U302	
U601	
UART3	23
UART5	23

X

X201		24
------	--	----

Document: Document number	nanoMODUL-STM32F103 r: L-733e_0, Preliminary Version, April 2009	
How would you im	prove this manual?	
Did you find any m	nistakes in this manual?	page
Submitted by: Customer number:		
Name:		
Company:		
Address:		
Detum to.		
Return to:	PHYTEC Technologie Holding AG	
	Postfach 100403	
	D-55135 Mainz, Germany Fax : +49 (6131) 9221-33	

Published by

© PHYTEC Messtechnik GmbH 2009

Ordering No. L-733e_0 Printed in Germany