

EDITION JUNE 2009

A product of a PHYTEC Technology Holding company

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark (TM) and copyright (CO) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2009 PHYTEC Messtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Messtechnik GmbH.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (800) 0749832 order@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Web Site:	http://www.phytec.de	http://www.phytec.com

Preliminary Edition June 2009

1	Pref	face	1
	1.1	Introduction	2
	1.2	Block Diagram	4
	1.3	View of the phyCORE-i.MX35	5
2	Pin	Description	7
3	Jum	npers	21
4	Pow	wer Requirements	25
5	Rea	al Time Clock U1 Backup-Voltage	26
6	Sys	stem Configuration	27
	6.1	System Startup Configuration	27
		6.1.1 Power-Up-Mode	27
		6.1.2 Boot Mode Select	
7	Sys	stem Memory	29
	7.1	Memory Model	
	7.2	DDR2-SDRAM (U6-U7)	31
	7.3	NOR-Flash (U9)	
	7.4	NAND Flash Memory (U10)	
	7.5	I ² C EEPROM (U2)	34
		7.5.1 Setting the EEPROM Lower Addres	
		(J11, J14, J15)	35
		7.5.2 EEPROM Write Protection Control	(J1)36
8	RS-	-232	37
	8.1	RS232 Transceiver (U12)	37
		8.1.1 UART2 Routing (RN4)	
9	USE	В	
	9.1	USB-OTG	
	9.2	USB-Host	
10	Ethe	ernet Controller / Ethernet-Phy (U5)	40
11		N	41
12	JTA	AG Interface (X2)	43
13	Tec	chnical Specifications	47

14	Hints for Handling the phyCORE-i.MX35	49
15	The phyCORE i.MX35 on the i.MX Carrier Board	51
	15.1 Concept of the phyCORE-i.MX Development Kits	52
	15.2 phyMAP-i.MX35	53
	15.2.1 phyMAP-i.MX35 jumper settings	55
	15.2.2 phyMAP-i.MX35 signal mapping	58
	15.2.3 phyMAP-i.MX35 USB-Host interface	65
	15.2.4 phyMAP-i.MX35 CAN interface	67
	15.2.5 phyMAP-i.MX35 Boot select switch	69
	15.2.6 phyMAP-i.MX35 mapper Physical Dimensions	71
	15.3 Cooperation of phyCORE-i.MX35 and phyCORE-i.MX	
	Carrier Board	72
	15.3.1 Power Supply	73
	15.3.2 CAN Interface	77
	15.3.3 Push Buttons and LEDs	79
	15.3.4 Keypad Interface	81
	15.3.5 Compact Flash Card	82
	15.3.6 Security Digital Card/ MultiMedia Card	83
	15.3.7 Audio and Touchscreen	85
	15.3.8 USB Host	87
	15.3.9 LCD connectors	
	15.3.10 Camera Interface	91
	15.3.11 JTAG Interface	94
	15.3.12 Complete jumper setting list for phyCORE-i.MX	(35
	on the i.MX Carrier Board	96
16	Revision History	99
17	Component Placement Diagram	101
Inde	ех	103

Index of Figures

Block Diagram of the phyCORE-i.MX354
Top view of the phyCORE-i.MX35 (controller side)5
Bottom view of the phyCORE-i.MX35 (connector side) $\dots 6$
Pin-out of the phyCORE-Connector (top view, with cross section insert)8
Typical jumper pad numbering scheme21
Jumper locations (top view)22
Jumper locations (bottom view)23
JTAG interface at X2 (top view)43
JTAG interface at X2 (bottom view)44
Physical dimensions of phyCORE-i.MX35 module47
phyCORE-i.MX35 Carrier Board connection using the phyMAP-i.MX35
phyMAP-i.MX35 top view53
phyMAP-i.MX35 bottom view54
umper location on PMA-00555
PMA-005 USB-Host interface65
PMA-005 CAN interface67
PMA-005 Boot select dip-switch69
Physical dimensions of phyMAP-i.MX35 mapper71
pyhCORE-i.MX Carrier Board and phyCORE-i.MX35 Power Supply73
phyCORE-i.MX Carrier Board CAN Interface77
phyCORE-i.MX Carrier Board Buttons and LEDs79
phyCORE-i.MX Carrier Board Keypad Interface81
phyCORE-i.MX Carrier Board SD/MMC Card Interface
phyCORE-i.MX Carrier Board Audio/Touch Interface85
phyCORE-iMX Carrier Board USB-Host Interface87

Figure 26:	phyCORE-i.MX Carrier Board LCD Interfaces89
Figure 27:	phyCORE-i.MX Carrier Board Camera Interface91
Figure 28:	phyCORE-iMX Carrier Board JTAG Interface94
Figure 29:	phyCORE-i.MX35 component placement (top view)101
Figure 30:	phyCORE-i.MX35 component placement (bottom view)

Index of Tables

Table 1:	Pin-out of the phyCORE-Connector X19
Table 2:	Jumper settings
Table 3:	i.MX35 default power input voltages25
Table 4:	Basic Boot Modes of i.MX35x module
Table 5:	Advanced Boot Modes of i.MX35x module28
Table 6:	i.MX35 memory map30
Table 7:	Compatible NOR Flash devices
Table 8:	Compatible NAND Flash devices
Table 9:	U2 EEPROM I ² C address via J11, J14, and J1535
Table 10:	EEPROM write protection states via J1
Table 11:	RN4 UART2 signal routing
Table 12:	Fast Ethernet controller memory map40
Table 13:	CAN controller memory map41
Table 14:	JTAG connector X2 signal assignment45
Table 15:	Jumper settings of PMA-00557
Table 16:	PMA-005 mapping list58
Table 17:	PMA-005 USB-Host jumper settings
Table 18:	PMA-005 CAN jumper settings68
Table 19:	x_BOOT3 selection70
Table 20:	x_BOOT4 selection70
Table 21:	Jumper settings for i.MX35 power supply via power plug
Table 22:	Jumper settings for i.MX35 power supply via POE75
	Jumper settings for i.MX35 power supply via battery76
	CAN2 interface jumper settings
	x_BOOT_MODE0 selection80
	x_BOOT_MODE1 selection80
	x_switch80
	SD/MMC interface jumper settings for i.MX35 module84

Table 29:	Audio/Touchscreen interface jumper settings for i.MX35 module
Table 30:	UBS Host interface jumper settings for i.MX35 module
Table 31:	Camera interface jumper settings for i.MX35 module92
Table 32:	JTAG jumper settings for phyCORE-i.MX35 module95
Table 33:	Jumper settings for i.MX35 module on i.MX Carrier Board96

1 Preface

This hardware manual describes the phyCORE-i.MX35 Single Board Computer's design and function. Precise specifications for the Freescale i.MX35 microcontrollers can be found in the enclosed microcontroller Data Sheet/User's Manual.

In this hardware manual and in the attached schematics, active low signals are denoted by a "/" or "#" preceding the signal name (e.g.: /RD or #RD). A "0" indicates a logic zero or low-level signal, while a "1" represents a logic one or high-level signal.

Declaration of Electro Magnetic Conformity of the PHYTEC phyCORE-I.MX35

PHYTEC Single Board Computers (henceforth products) are designed for installation in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Caution:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header row connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

The phyCORE-i.MX35 is one of a series of PHYTEC Single Board Computers that can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports a variety of 8-/16- and 32-bit controllers in two ways:

- (1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
- (2) as insert-ready, fully functional phyCORE OEM modules, which can be embedded directly into the user's peripheral hardware design.

PHYTEC's microcontroller modules allow engineers to shorten development horizons, reduce design costs and speed project concepts from design to market. For more information go to:

http://www.phytec.com/services/phytec-advantage.html

1.1 Introduction

The phyCORE-i.MX35 belongs to PHYTEC's phyCORE Single Board Computer module family. The phyCORE SBCs represent the continuous development of PHYTEC Single Board Computer technology. Like its mini-, micro- and nanoMODUL predecessors, the phyCORE boards integrate all core elements of a microcontroller system on a subminiature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

As independent research indicates that approximately 70 % of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments the phyCORE board design features an increased pin package. The increased pin package allows dedication of approximately 20 % of all pin header connectors on the phyCORE boards to ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyCORE boards even in high noise environments.

phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled microvias are used on the boards, providing phyCORE users with access to this cutting edge miniaturization technology for integration into their own design.

The phyCORE-i.MX35 is a subminiature (85 x 58 mm) insert-ready Single Board Computer populated with the Freescale i.MX35x microcontroller. Its universal design enables its insertion in a wide range of embedded applications. All controller signals and ports extend from the controller to high-density pitch (0.635 mm) connectors aligning two sides of the board, allowing it to be plugged like a "big chip" into a target application.

Precise specifications for the controller populating the board can be found in the applicable controller User's Manual or datasheet. The descriptions in this manual are based on the Freescale i.MX35x. No description of compatible microcontroller derivative functions is included, as such functions are not relevant for the basic functioning of the phyCORE-i.MX35.

The phyCORE-I.MX35 offers the following features:

- Subminiature Single Board Computer (85 x 58 mm) achieved through modern SMD technology
- Populated with the Freescale i.MX35x microcontroller (MAPBGA 1568-01, 17x17mm, 0.8 Pitch packaging)
- Improved interference safety achieved through multi-layer PCB technology and dedicated ground pins
- Controller signals and ports extend to two 200-pin high-density (0.635 mm) Molex connectors aligning two sides of the board, enabling it to be plugged like a "big chip" into target application
- Max. 532 MHz core clock frequency
- Boot from NOR or NAND Flash
- 32MByte (up to 64MByte) Intel Strata NOR Flash
- 1 GByte (up to 32 GByte) on-board NAND Flash¹
- 128 MByte (up to 256 MByte) DDR2 SDRAM on-board
- RS-232 transceiver supporting one UART at data rates of up to 460kbps
- UART Interface without transceiver
- 32 KB I²C EEPROM
- Separate I²C RTC with backup function
- Integrated High-Speed USB OTG and Full-Speed USB Host PHYs
- Integrated 10/100MBit Ethernet Controller, Ethernet-PHY onboard
- Two integrated CAN Controllers
- All controller required supplies generated on board by Power-Supply device
- Synchronous 24Bit LCD-Interface
- 12-/16-bit CMOS Camera Interface
- Support of standard 20 pin debug interface through JTAG connector
- Keyboard support for up to 16 keys in a 4 * 4 matrix
- Two I²C interfaces
- SD/MMC card interface with DMA

¹ Please contact PHYTEC for more information about additional module configurations.

1.2 Block Diagram

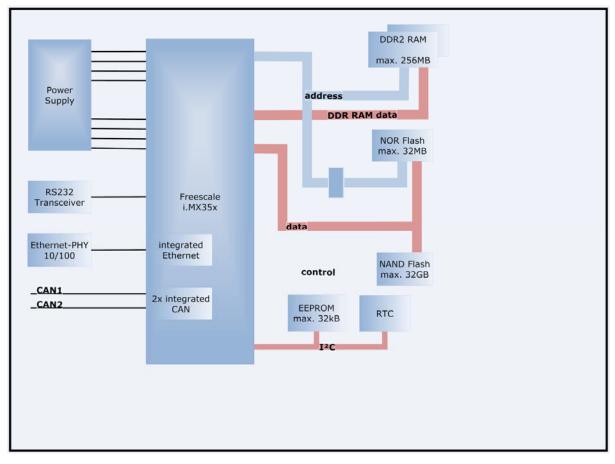


Figure 1: Block Diagram of the phyCORE-i.MX35

1.3 View of the phyCORE-i.MX35

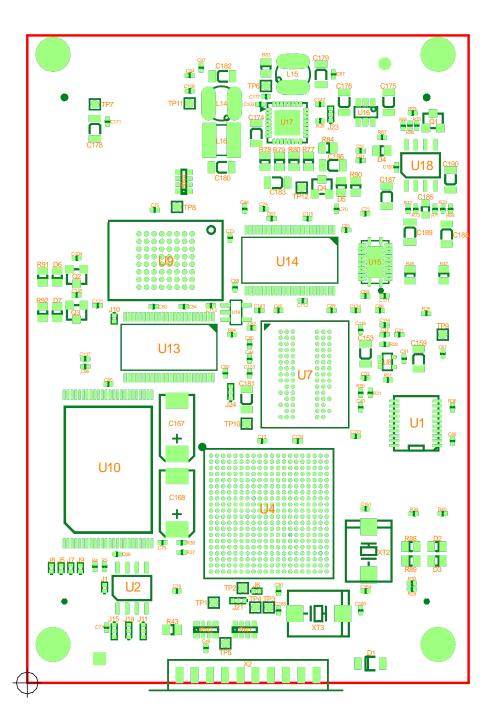
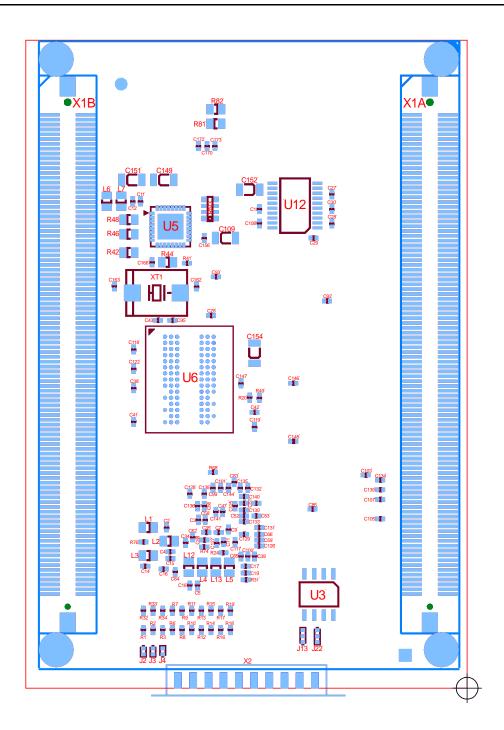



Figure 2: Top view of the phyCORE-i.MX35 (controller side)

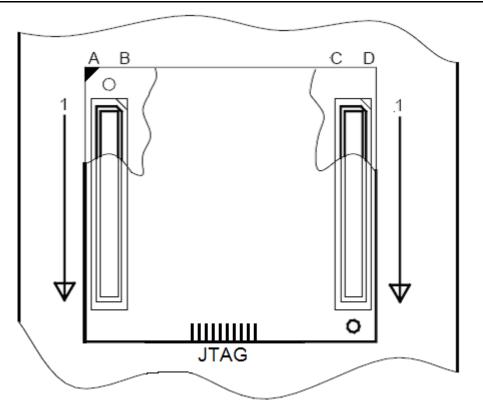
*Figure 3: Bottom view of the phyCORE-i.MX35 (connector si*de)

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

As *Figure 4* indicates, all controller signals extend to surface mount technology (SMT) connectors (0.635 mm) lining two sides of the module (referred to as phyCORE-connector). This allows the phyCORE-i.MX35 to be plugged into any target application like a "big chip".

A new numbering scheme for the pins on the phyCORE-connector has been introduced with the phyCORE specifications. This enables quick and easy identification of desired pins and minimizes errors when matching pins on the phyCORE-module with the phyCORE-connector on the appropriate PHYTEC Development Board or in user target circuitry.


The numbering scheme for the phyCORE-connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number. Pin 1A, for example, is always located in the upper left hand corner of the matrix. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progresses alphabetically from left to right (*refer to Figure 4*).

The numbered matrix can be aligned with the phyCORE-i.MX35 (viewed from above; phyCORE-connector pointing down) or with the socket of the corresponding phyCORE Development Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin 1A) is thus covered with the corner of the phyCORE-i.MX35 marked with a triangle. The numbering scheme is always in relation to the PCB as viewed from above, even if all connector contacts extend to the bottom of the module.

The numbering scheme is thus consistent for both the module's phyCORE-connector as well as mating connectors on the phyCORE Development Board or target hardware, thereby considerably reducing the risk of pin identification errors.

Since the pins are exactly defined according to the numbered matrix previously described, the phyCORE-connector is usually assigned a single designator for its position (X1 for example). In this manner the phyCORE-connector comprises a single, logical unit regardless of the fact that it could consist of more than one physical socketed connector. The location of row 1 on the board is marked by a triangle on the PCB to allow easy identification.

The following figure (*Figure 4*) illustrates the numbered matrix system. It shows a phyCORE-i.MX35 with SMT phyCORE-connectors on its underside (defined as dotted lines) mounted on a Development Board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a cross-view of the phyCORE-module showing these phyCORE-connectors mounted on the underside of the module's PCB.

Figure 4: Pin-out of the phyCORE-Connector (top view, with cross section insert)

Table 1 provides an overview of the pin-out of the phyCORE-connector, as well as descriptions of possible alternative functions.

Table 1 also provides the appropriate signal level interface voltages listed in the SL (**S**ignal Level) column. The Freescale i.MX35 is a multi-voltage operated microcontroller and as such special attention should be paid to the interface voltage levels to avoid unintentional damage to the microcontroller and other on-board components. *Please refer to the Freescale i.MX35 User's Manual/Data Sheet for details on the functions and features of controller signals and port pins.*

Note:

SL is short for Signal Level (V) and is the applicable logic level to interface a given pin.

	PIN Row X1A					
PIN #	SIGNAL	I/O	SL	DESCRIPTION		
1A	VDD_3V3	-	VDD_3V3	LCD reference voltage (3.3 V)		
2A	GND	-	0	Ground 0V		
ЗA	not connected	-	-	Pin left unconnected		
4A	not connected	-	-	Pin left unconnected		
5A	X_LCD_VSYNC	I/O	VDD_3V3	Display vertical synchronization pulse		
6A	not connected	-	-	Pin left unconnected		
7A	GND	-	0	Ground 0 V		
8A	X_LCD_REV	0	VDD_3V3	REV signal for display		
9A	X_LCD_SPL	0	VDD_3V3	SPL/SPR signal for display		
10A	X_LCD_DRDY	0	VDD_3V3	Data enable signal for display		
11A	not connected	-	-	Pin left unconnected		
12A	GND	-	0	Ground 0V		
13A	X_LCD_LD0	I/O	VDD_3V3	Input/Output data 0 to display		
14A	X_LCD_LD2	I/O	VDD_3V3	Input/Output data 2 to display		
15A	X_LCD_LD3	I/O	VDD_3V3	Input/Output data 3 to display		
16A	X_LCD_LD5	I/O	VDD_3V3	Input/Output data 5 to display		
17A	GND	-	0	Ground 0V		
18A	X_LCD_LD8	I/O	VDD_3V3	Input/Output data 8 to display		
19A	X_LCD_LD10	I/O	VDD_3V3	Input/Output data 10 to display		
20A	X_LCD_LD11	I/O	VDD_3V3	Input/Output data 11 to display		
21A	X_LCD_LD13	I/O	VDD_3V3	Input/Output data 13 to display		
22A	GND	-	0	Ground 0V		
23A	X_LCD_LD17	I/O	VDD_3V3	Input/Output data 17 to display		
24A	X_LCD_LD18	I/O	VDD_3V3	Input/Output data 18 to display		
25A	X_LCD_LD19	I/O	VDD_3V3	Input/Output data 19 to display		
26A	X_LCD_LD21	I/O	VDD_3V3	Input/Output data 21 to display		
27A	GND	-	0	Ground 0V		
28A	#CS0_3V3	0	VDD_3V3	Chip Select 0 output		
29A	#CS1_3V3	0	VDD_3V3	Chip Select 1 output		
30A	#CS4_3V3	0	VDD_3V3	Chip Select 4 output		
31A	EB1_3V3	0	VDD_3V3	Active low external enable byte signal that controls D[7:0]		
32A	GND	-	0	Ground 0 V		

Table 1:Pin-out of the phyCORE-Connector X1

33A	#OE_3V3	0	VDD_3V3	Memory Output Enable
34A	LBA_3V3	0	VDD_3V3	Load Burst Address
35A	BCLK_3V3	0	VDD_3V3	Burst Clock
36A	A2_3V3	0	VDD_3V3	Address-Line A2
37A	GND	-	0	Ground 0V
38A	A4_3V3	0	VDD_3V3	Address-Line A4
39A	A5_3V3	0	VDD_3V3	Address-Line A5
40A	A7_3V3	0	VDD_3V3	Address-Line A7
41A	A10_3V3	0	VDD_3V3	Address-Line A10
42A	GND	-	0	Ground 0V
43A	A12_3V3	0	VDD_3V3	Address-Line A12
44A	A13_3V3	0	VDD_3V3	Address-Line A13
45A	A15_3V3	0	VDD_3V3	Address-Line A15
46A	A18_3V3	0	VDD_3V3	Address-Line A18
47A	GND	-	0	Ground 0V
48A	A20_3V3	0	VDD_3V3	Address-Line A20
49A	A21_3V3	0	VDD_3V3	Address-Line A21
50A	A23_3V3	0	VDD_3V3	Address-Line A23
51A	D0	I/O	VDD_3V3	Data_Bus D0
52A	GND	-	0	Ground 0V
53A	D2	I/O	VDD_3V3	Data_Bus D2
54A	D3	I/O	VDD_3V3	Data_Bus D3
55A	D5	I/O	VDD_3V3	Data_Bus D5
56A	D8	I/O	VDD_3V3	Data_Bus D8
57A	GND	-	0	Ground 0V
58A	D10	I/O	VDD_3V3	Data_Bus D10
59A	D11	I/O	VDD_3V3	Data_Bus D11
60A	D13	I/O	VDD_3V3	Data_Bus D13
61A	VDD_1V8	-	VDD_1V8	1.8V supply voltage
62A	GND	-	0	Ground 0V
63A	not connected	-	-	Pin left unconnected
64A	not connected	-	-	Pin left unconnected
65A	not connected	-	-	Pin left unconnected
66A	not connected	-	-	Pin left unconnected
67A	GND	-	0	Ground 0V
68A	not connected		-	Pin left unconnected
69A	X_FEC_TDATA3	0	VDD_3V3	Fast Ethernet Transmit Data 3
70A	X_FEC_RX_ER R	Ι	VDD_3V3	Fast Ethernet Receive Data Error
71A	X_FEC_RDATA2	Ι	VDD_3V3	Fast Ethernet Receive Data 2
72A	GND	-	0	Ground 0 V

73A	X_FEC_MDC	0	VDD_3V3	Fast Ethernet Management Data Clock
74A	X_FEC_TX_CLK	I	VDD_3V3	Fast Ethernet Transmit Clock signal
75A	X_FEC_RDATA0	Ι	VDD_3V3	Fast Ethernet Receive Data 0
76A	X_FEC_RX_CLK	Ι	VDD_3V3	Fast Ethernet Receive Clock signal
77A	GND	-	0	Ground 0 V
78A	X_CSI_D6	Ι	VDD_3V3	Camera Sensor D6
79A	X_CSI_D8	Ι	VDD_3V3	Camera Sensor D8
80A	X_CSI_D9	Ι	VDD_3V3	Camera Sensor D9
81A	X_CSI_D11	Ι	VDD_3V3	Camera Sensor D11
82A	GND	-	0	Ground 0 V
83A	X_CSI_D14	Ι	VDD_3V3	Camera Sensor D14
84A	X_CSI_MCLK	0	VDD_3V3	Camera Sensor Master Clock
85A	X_CSI_VSYNC	Ι	VDD_3V3	Camera Sensor vertical sync
86A	X_CSI_PIXCLK	Ι	VDD_3V3	Camera Sensor pixel clock
87A	GND	-	0	Ground 0 V
88A	VDD_3V3	-	VDD_3V3	CSI and FEC supply voltage (3.3V)
89A	X_FEC_TX_EN	0	VDD_3V3	Fast Ethernet transmit enable signal
90A	X_KEY_COL0	I/O	VDD_3V3	Keypad Port Column 0
91A	X_KEY_COL1	I/O	VDD_3V3	Keypad Port Column 1
92A	GND	-	0	Ground 0 V
93A	X_KEY_COL2	I/O	VDD_3V3	Keypad Port Column 2
94A	X_KEY_COL3	I/O	VDD_3V3	Keypad Port Column 3
95A	not connected	-	-	Pin left unconnected
96A	X_GPIO2_6	I/O	VDD_3V3	GPIO2_6
97A	GND	-	0	Ground 0V
98A	X_GPIO2_7	I/O	VDD_3V3	GPIO2_7
99A	X_GPIO2_23	I/O	VDD_3V3	GPIO2_23
100A	X_GPIO2_24	I/O	VDD_3V3	GPIO2_24

	PIN Row X1B						
PIN #	SIGNAL	I/O	SL	DESCRIPTION			
1B	VDD_ALIVE	-	VDD_ALIVE	VDD-ALIVE from LDO of power-supply (1.2 V)			
2B	X_VSTBY	0	VDD_3V3	I/O signal to PMIC			
3B	X_OWIRE	I/O	VDD_3V3	One-Wire bus			
4B	GND	-	0	Ground 0 V			
5B	X_LCD_HSYNC	I/O	VDD_3V3	Display horizontal synchronization pulse			
6B	not connected	-	-	Pin left unconnected			
7B	X_LCD_CONTRAST	0	VDD_3V3	Contrast control for display			
8B	X_LCD_CLS	0	VDD_3V3	CLS signal for display			
9B	GND	-	0	Ground 0V			
10B	X_LCD_FPSHIFT	0	VDD_3V3	Display Shift Clock			
11B	not connected	-	-	Pin left unconnected			
12B	not connected	-	-	Pin left unconnected			
13B	X_LCD_LD1	I/O	VDD_3V3	Input/Output data 1 to display			
14B	GND	-	0	Ground 0V			
15B	X_LCD_LD4	I/O	VDD_3V3	Input/Output data 4 to display			
16B	X_LCD_LD6	I/O	VDD_3V3	Input/Output data 6 to display			
17B	X_LCD_LD7	I/O	VDD_3V3	Input/Output data 7 to display			
18B	X_LCD_LD9	I/O	VDD_3V3	Input/Output data 9 to display			
19B	GND	-	0	Ground 0V			
20B	X_LCD_LD12	I/O	VDD_3V3	Input/Output data 12 to display			
21B	X_LCD_LD14	I/O	VDD_3V3	Input/Output data 14 to display			
22B	X_LCD_LD15	I/O	VDD_3V3	Input/Output data 15 to display			
23B	X_LCD_LD16	I/O	VDD_3V3	Input/Output data 16 to display			
24B	GND	-	0	Ground 0V			
25B	X_LCD_LD20	I/O	VDD_3V3	Input/Output data 20 to display			
26B	X_LCD_LD22	I/O	VDD_3V3	Input/Output data 22 to display			
27B	X_LCD_LD23	I/O	VDD_3V3	Input/Output data 23 to display			
28B	#CS3_3V3	0	VDD_3V3	Chip Select 3 output			
29B	GND	-	0	Ground 0V			
30B	#CS5_3V3	0	VDD_3V3	Chip Select 5 output			
31B	EB0_3V3	0	VDD_3V3	WEIM enable byte signal			
32B	#RW_3V3	0	VDD_3V3	WEIM Read/Write signal			
33B	ECB_WAIT_3V3	Ι	VDD_3V3	WEIM End Current Burst / Wait signal			
34B	GND	-	0	Ground 0V			
35B	A0_3V3	0	VDD_3V3	Address-Line A0			
36B	A1_3V3	0	VDD_3V3	Address-Line A1			
37B	A3_3V3	0	VDD_3V3	Address-Line A3			
38B	A6_3V3	0	VDD_3V3	Address-Line A6			

39B	GND	-	0	Ground 0V
40B	A8_3V3	0	VDD_3V3	Address-Line A8
41B	A9_3V3	0	VDD_3V3	Address-Line A9
42B	A11_3V3	0	VDD_3V3	Address-Line A11
43B	A14_3V3	0	VDD_3V3	Address-Line A14
44B	GND	-	0	Ground 0 V
45B	A16_3V3	0	VDD_3V3	Address-Line A16
46B	A17_3V3	0	VDD_3V3	Address-Line A17
47B	A19_3V3	0	VDD_3V3	Address-Line A19
48B	A22_3V3	0	VDD_3V3	Address-Line A22
49B	GND	-	0	Ground 0V
50B	A24_3V3	0	VDD_3V3	Address-Line A24
51B	A25_3V3	0	VDD_3V3	Address-Line A25
52B	D1	I/O	VDD_3V3	Data_Bus D1
53B	D4	I/O	VDD_3V3	Data_Bus D4
54B	GND	-	0	Ground 0 V
55B	D6	I/O	VDD_3V3	Data_Bus D6
56B	D7	I/O	VDD_3V3	Data_Bus D7
57B	D9	I/O	VDD_3V3	Data_Bus D9
58B	D12	I/O	VDD_3V3	Data_Bus D12
59B	GND	-	0	Ground 0 V
60B	D14	I/O	VDD_3V3	Data_Bus D14
61B	D15	I/O	VDD_3V3	Data_Bus D15
62B	#X_FL_WP	Ι	VDD_3V3	NOR-Flash write-protect signal
63B	not connected	-	-	Pin left unconnected
64B	GND	-	0	Ground 0 V
65B	not connected	-	-	Pin left unconnected
66B	not connected	-	-	Pin left unconnected
67B	not connected	-	-	Pin left unconnected
68B	not connected	-	-	Pin left unconnected
69B	GND	-	0	Ground 0 V
70B	X_FEC_RDATA1	Ι	VDD_3V3	Fast Ethernet Receive Data 1
71B	X_FEC_RDATA3	Ι	VDD_3V3	Fast Ethernet Receive Data 3
72B	X_FEC_MDIO	I/O	VDD_3V3	Fast Ethernet Management Data Input/Output
73B	X_FEC_CRS	Ι	VDD_3V3	Fast Ethernet Carrier Sense enable
74B	GND	-	0	Ground 0 V
75B	X_FEC_RX_DV	Ι	VDD_3V3	Fast Ethernet Receive data valid signal
76B	X_FEC_COL	Ι	VDD_3V3	Fast Ethernet Collision signal
77B	X_FEC_TX_ERR	0	VDD_3V3	Fast Ethernet Transmit Data Error
78B	X_CSI_D7	Ι	VDD_3V3	Camera Sensor D7
79B	GND	-	0	Ground 0 V

-				
80B	X_CSI_D10	Ι	VDD_3V3	Camera Sensor D10
81B	X_CSI_D12	Ι	VDD_3V3	Camera Sensor D12
82B	X_CSI_D13	Ι	VDD_3V3	Camera Sensor D13
83B	X_CSI_D15	Ι	VDD_3V3	Camera Sensor D15
84B	GND	-	0	Ground 0 V
85B	X_CSI_HSYNC	Ι	VDD_3V3	Camera Sensor horizontal sync
86B	X_FEC_TDATA0	0	VDD_3V3	Fast Ethernet Transmit Data 0
87B	X_FEC_TDATA1	0	VDD_3V3	Fast Ethernet Transmit Data 1
88B	X_FEC_TDATA2	0	VDD_3V3	Fast Ethernet Transmit Data 2
89B	GND	-	0	Ground 0 V
90B	X_KEY_ROW0	I/O	VDD_3V3	Keypad Port Row 0
91B	X_KEY_ROW1	I/O	VDD_3V3	Keypad Port Row 1
92B	X_KEY_ROW2	I/O	VDD_3V3	Keypad Port Row 2
93B	X_KEY_ROW3	I/O	VDD_3V3	Keypad Port Row 3
94B	GND	-	0	Ground 0 V
95B	not connected	-	-	Pin left unconnected
96B	not connected	-	-	Pin left unconnected
97B	not connected	-	-	Pin left unconnected
98B	not connected	-	-	Pin left unconnected
99B	GND	-	0	Ground 0 V
100B	X_CLKO	0	VDD_3V3	Clock out signal selected from internal clock signals

	PIN Row X1C						
PIN #	SIGNAL I/ SL O		SL	DESCRIPTION			
1C	VIN	-	Power	Main Power Input (3,6V - 5,5 V)			
2C	VIN	-	Power	Main Power Input (3,6 V - 5,5 V)			
3C	GND	-	0	Ground 0 V			
4C	VIN	-	Power	Main Power Input (3,6 V - 5,5 V)			
5C	VIN	-	Power	Main Power Input (3,6 V - 5,5 V)			
6C	X_BKUP_SUPPLY	-	-	Backup power supply for the ext. RTC			
7C	GND	-	0	Ground 0V			
8C	VDD_3V3	-	VDD_3V3	Power for 3,3 V devices			
9C	VDD_3V3	-	VDD_3V3	Power for 3,3V devices			
10C	VDD_3V3	-	VDD_3V3	Power for 3,3 V devices			
11C	VDD_3V3	-	VDD_3V3	Power for 3,3 V devices			
12C	GND	-	0	Ground 0 V			
13C	X_MVDD_BKUP	-	MVDD_BKUP	alternate MPLL supply for i.MX35x			
14C	X_PVCC_BKUP	-	PVCC_BKUP	alternate PPLL supply for i.MX35x			
15C	not connected	-	-	Pin left unconnected			
16C	not connected	-	-	Pin left unconnected			
17C	GND	-	0	Ground 0V			
18C	not connected	-	-	Pin left unconnected			
19C	not connected	-	-	Pin left unconnected			
20C	not connected	-	-	Pin left unconnected			
21C	not connected	-	-	Pin left unconnected			
22C	GND	-	0	Ground 0 V			
23C	X_SCK4	I/O	VDD_3V3	SSI serial clock			
24C	X_STXFS4	I/O	VDD_3V3	SSI serial transmit frame sync			
25C	X_STXD4	0	VDD_3V3	SSI serial transmit Data			
26C	X_SRXD4	I	VDD_3V3	SSI serial receive Data			
27C	GND	-	0	Ground 0 V			
28C	not connected	-	-	Pin left unconnected			
29C	not connected	-	-	Pin left unconnected			
30C	not connected	-	-	Pin left unconnected			
31C	not connected	-	-	Pin left unconnected			
32C	GND	-	0	Ground 0 V			
33C	X_ETH_LINK	0	VDD_3V3	Ethernet Link & Activity Indicator (Open Drain)			
34C	X_ETH_SPEED	0	VDD_3V3	Ethernet Speed Indicator (Open Drain)			
35C	X_ETH_RX-	I/O	VDD_3V3	Receive negative input (normal) Transmit negative output (reversed)			

36C	X_ETH_TX-	I/O	VDD_3V3	Transmit negative output (normal) Receive negative input (reversed)
37C	GND	-	0	Ground 0 V
38C	#X_ETH_INT	0	VDD_3V3	Ethernet Phy interrupt output
39C	#X_CPU_DE	I	VDD_3V3	JTAG debug enable
40C	X_CPU_RTCK	0	VDD_3V3	JTAG test clock
41C	#X_CPU_TRST	I	VDD_3V3	JTAG test reset
42C	GND	-	0	Ground 0 V
43C	X_SCKT	I/O	VDD_3V3	Audio transmitter serial clock
44C	X_FST	I/O	VDD_3V3	Audio frame sync for transmitter
45C	X_HCKT	I/O	VDD_3V3	Audio high frequency clock for transmitter
46C	X_SCKR	I/O	VDD_3V3	Audio receiver serial clock
47C	GND	-	0	Ground 0 V
48C	X_FSR	I/O	VDD_3V3	Audio frame sync for receiver
49C	VDD_3V3	-	VDD_3V3	SD reference voltage (3.3 V)
50C	X_SD2_CLK	0	VDD_3V3	Clock for MMC/SD/SDIO 2 card
51C	X_SD2_CMD	I/O	VDD_3V3	SD2 CMD line connect to card
52C	GND	-	0	Ground 0 V
53C	X_USBPHY1_VBUS	I/O	5V (SW3)	USB1 VBUS Voltage
54C	X_USBPHY1_DM	I/O	VDD_3V3	USB1 transceiver cable interface, D-
55C	X_USBPHY1_DP	I/O	VDD_3V3	USB1 transceiver cable interface, D+
56C	X_USBPHY1_UID	I/O	VDD_3V3	USB1 on the go transceiver cable ID resistor connection
57C	GND	-	0	Ground 0 V
58C	not connected	-	-	Pin left unconnected
59C	X_USBOTG_CLK	Ι	VDD_3V3	USB OTG clock signal
60C	X_USBH2_CLK	Ι	VDD_3V3	USB Host2 clock signal
61C	X_USBOTG_DIR	Ι	VDD_3V3	USB OTG data direction
62C	GND	-	0	Ground 0 V
63C	X_USBOTG_DATA2	I/O	VDD_3V3	USB OTG data line 2
64C	X_USBOTG_DATA4	I/O	VDD_3V3	USB OTG data line 4
65C	X_USBOTG_DATA6	I/O	VDD_3V3	USB OTG data line 6
66C	not connected	-	VDD_3V3	Pin left unconnected
67C	GND	-	0	Ground 0 V
68C	X_SD1_DATA0	I/O	VDD_3V3	SD/MMC 1 Data0 line in all modes also used to detect busy state
69C	X_SD1_DATA1	I/O	VDD_3V3	SD/MMC 1 Data1 line in 4/8-bit mode also used to detect interrupt in 1/4-bit mode
70C	X_SD1_DATA2	I/O	VDD_3V3	SD/MMC 1 Data2 line or Read wait in 4-bit mode Read wait in 1-bit mode

71C	X_SD1_DATA3	I/O	VDD_3V3	SD/MMC 1 Data3 line in 4/8-bit mode or	
				configured as card detection pin may be configured	
				as card detection pin in 1-bit mode	
72C	GND	-	0	Ground 0 V	
73C	X_UART1_RTS	Ι	VDD_3V3	Request to send UART 1	
74C	X_UART1_CTS	0	VDD_3V3	Clear to send UART 1	
75C	X_UART1_RI	I/O	VDD_3V3	Ring Indicator UART 1	
76C	X_UART1_DCD	I/O	VDD_3V3	Data carrier detect UART1	
77C	GND	-	0	Ground 0 V	
78C	not connected	-	-	Pin left unconnected	
79C	not connected	-	-	Pin left unconnected	
80C	not connected	-	-	Pin left unconnected	
81C	not connected	-	-	Pin left unconnected	
82C	GND	-	0	Ground 0 V	
83C	X_I2C3_SCL	I/O	VDD_3V3	I ² C 3 Serial Clock	
84C	X_I2C3_SDA	I/O	VDD_3V3	I ² C 3 Serial Data	
85C	X_I2C1_DAT	I/O	VDD_3V3	I ² C 1 Serial Data	
86C	X_CSPI1_SCLK	I/O	VDD_3V3	SPI 1 clock	
87C	GND	-	0	Ground 0 V	
88C	X_CSPI1_SS0	I/O	VDD_3V3	SPI 1 Chip select 0	
89C	X_CSPI1_SPI_RDY	I/O	VDD_3V3	SPI 1 SPI data ready in Master mode	
90C	X_CSPI2_MOSI	I/O	VDD_3V3	SPI 2 Master data out; slave data in	
91C	X_CSPI2_SCLK	I/O	VDD_3V3	SPI 2 clock	
92C	GND	-	0	Ground 0 V	
93C	not connected	-	-	Pin left unconnected	
94C	not connected	-	-	Pin left unconnected	
95C	not connected	-	-	Pin left unconnected	
96C	not connected	-	-	Pin left unconnected	
97C	GND	-	0	Ground 0V	
98C	X_BOOT0	I/O	VDD_3V3	Boot-Mode 0	
99C	X_BOOT1	I/O	VDD_3V3	Boot-Mode 1	
100C	VDD_3V3	-	VDD_3V3	Boot-Mode reference voltage (3.3 V)	

	PIN Row X1D						
PIN #	SIGNAL	I/O	SL	DESCRIPTION			
1D	VIN	-	Power	Main Power Input (3,6 V - 5,5 V)			
2D	VIN	-	Power	Main Power Input (3,6 V - 5,5 V)			
3D	GND	-	0	Ground 0 V			
4D	not connected	-	-	Pin left unconnected			
5D	#X_MASTER_RESET	Ι	VDD_3V3	Master Reset Input/Reset button			
6D	#X_RESET_MCU	0	VDD_3V3	Reset Output from reset unit			
7D	X_FUSE_VDD	-	FUSE_VDD	Fusebox write (program) Supply Voltage (3.3 V)			
8D	X_TOUT	0	VDD_3V3	Open-Drain Thermostat Output of U3 (DS75)			
9D	GND	-	0	Ground 0V			
10D	not connected	-	-	Pin left unconnected			
11D	not connected	-	-	Pin left unconnected			
12D	not connected	-	-	Pin left unconnected			
13D	not connected	-	-	Pin left unconnected			
14D	GND	-	0	Ground 0V			
15D	X_EN_VDD_3V3	I	VIN	Enable for 3.3 V power switch			
16D	X_EN_VDD_1V8	I	VIN	Enable for 1.8 V power switch			
17D	X_EN_VDD_1V375	I	VIN	Enable for 1.375 V power switch			
18D	X_EN_LDO1_2	I	VIN	Enable for power-supply LDO (3.3 V,1.8 V)			
19D	GND	-	0	Ground 0 V			
20D	X_EN_VDD_ALIVE	I	VIN	Enable for VDD_ALIVE LDO (1.2 V)			
21D	not connected	-	-	Pin left unconnected			
22D	X_UART2_RXD	I	VDD_3V3	Serial Data receive line UART 2			
23D	X_UART2_TXD	0	VDD_3V3	Serial Data transmit line UART 2			
24D	GND	-	0	Ground 0 V			
25D	X_UART2_RTS	I	VDD_3V3	Request to send UART 2			
26D	X_UART2_CTS	0	VDD_3V3	Clear to send UART 2			
27D	X_CAPTURE	I	VDD_3V3	Timer input capture			
28D	X_COMPARE	0	VDD_3V3	Timer output compare			
29D	GND	-	0	Ground 0 V			
30D	X_CAN2_TX	0	VDD_3V3	CAN 2 transmit			
31D	X_CAN2_RX	I	VDD_3V3	CAN 2 receive			
32D	X_CAN1_TX	0	VDD_3V3	CAN 1 transmit			
33D	X_CAN1_RX	I	VDD_3V3	CAN 1 receive			
34D	GND	-	0	Ground 0 V			
35D	X_ETH_RX+	I/O	VDD_3V3	Receive positive input (normal) Transmit positive output (reversed)			

© PHYTEC Messtechnik GmbH 2009 L-734e_0

36D	X_ETH_TX+	I/O	VDD_3V3	Transmit positive output (normal) Receive positive input (reversed)	
37D	VDD_3V3	-	VDD_3V3	JTAG reference voltage (3.3 V)	
38D	X_CPU_TCK	Ι	VDD_3V3	JTAG clock	
39D	GND	-	0	Ground 0 V	
40D	X_CPU_TDI	Ι	VDD_3V3	JTAG Data In	
41D	X_CPU_TDO	0	VDD_3V3	JTAG Data Out	
42D	X_CPU_TMS	Ι	VDD_3V3	JTAG Mode select	
43D	X_JTAG_MODE	Ι	VDD_3V3	JTAG Mode	
44D	GND	-	0	Ground 0 V	
45D	X_MLB_CLK	Ι	VDD_3V3	Media local bus clock input	
46D	X_MLB_DAT	I/O	VDD_3V3	Media local bus data input/output	
47D	X_MLB_SIG	I/O	VDD_3V3	Media local bus signal information I/O	
48D	VDD_3V3	-	VDD_3V3	SD/MMC reference voltage (3.3 V)	
49D	GND	-	0	Ground 0 V	
50D	X_SD2_DATA0	I/O	VDD_3V3	SD/MMC 2 Data0 line in all modes also used to detect busy state	
51D	X_SD2_DATA1	I/O	VDD_3V3	SD/MMC 2 Data1 line in 4/8-bit mode also used to detect interrupt in 1/4-bit mode	
52D	X_SD2_DATA2	I/O	VDD_3V3	SD/MMC 2 Data2 line or Read wait in 4-bit mode Read wait in 1-bit mode	
53D	X_SD2_DATA3	I/O	VDD_3V3	SD/MMC 2 Data3 line in 4/8-bit mode or configured as card detection pin may be configured as card detection pin in 1-bit mode	
54D	GND	-	0	Ground 0 V	
55D	X_USBOTG_PWR	0	VDD_3V3	USB Generic Power switch output	
56D	X_USBOTG_OC	Ι	VDD_3V3	USB Generic Over Current input	
57D	X_USBPHY2_DP	I/O	VDD_3V3	USB2 transceiver cable interface, D+	
58D	X_USBPHY2_DM	I/O	VDD_3V3	USB2 transceiver cable interface, D-	
59D	GND	-	0	Ground 0 V	
60D	X_USBOTG_STP	0	VDD_3V3	USB OTG stop signal	
61D	X_USBOTG_NXT	Ι	VDD_3V3	USB OTG next signal	
62D	X_USBOTG_DATA0	I/O	VDD_3V3	USB OTG data line 0	
63D	X_USBOTG_DATA1	I/O	VDD_3V3	USB OTG data line 1	
64D	GND	-	0	Ground 0 V	
65D	X_USBOTG_DATA3	I/O	VDD_3V3	USB OTG data line 3	
66D	X_USBOTG_DATA5	I/O	VDD_3V3	USB OTG data line 5	
67D	X_USBOTG_DATA7	I/O	VDD_3V3	USB OTG data line 7	
68D	X_SD1_CMD	I/O	VDD_3V3	SD1 CMD line connect to card	
69D	GND	-	0	Ground 0 V	
70D	X_SD1_CLK	0	VDD_3V3	Clock for MMC/SD/SDIO 1 card	
71D	not connected	-	-	Pin left unconnected	

72D	X_UART1_TXD	0	VDD_3V3	Serial data transmit signal UART 1
73D	X_UART1_RXD	Ι	VDD_3V3	Serial data receive signal UART 1
74D	GND	-	0	Ground 0 V
75D	X_UART1_DSR	I/O	VDD_3V3	Data set ready UART1
76D	X_UART1_DTR	I/O	VDD_3V3	Data terminal ready
77D	not connected	-	-	Pin left unconnected
78D	not connected	-	-	Pin left unconnected
79D	GND	-	0	Ground 0 V
80D	not connected	-	-	Pin left unconnected
81D	not connected	-	-	Pin left unconnected
82D	X_#IRQRTC	0	VDD_3V3	Interrupt Output from RTC U1 (RTC-8564JE)
83D	not connected	-	-	Pin left unconnected
84D	GND	-	0	Ground 0 V
85D	X_I2C1_CLK	I/O	VDD_3V3	I ² C 1 Serial Clock
86D	X_CSPI1_MOSI	I/O	VDD_3V3	SPI 1 Master data out; slave data in
87D	X_CSPI1_MISO	I/O	VDD_3V3	SPI 1 Master data in; slave data out
88D	X_CSPI1_SS1	I/O	VDD_3V3	SPI 1 Chip select 1
89D	GND	-	0	Ground 0 V
90D	X_CSPI2_MISO	I/O	VDD_3V3	SPI 2 Master data in; slave data out
91D	X_CSPI2_SPI_RDY	I/O	VDD_3V3	SPI 2 SPI data ready in Master mode
92D	X_CSPI2_SS0	I/O	VDD_3V3	SPI 2 Chip select 0
93D	not connected	-	-	Pin left unconnected
94D	GND	-	0	Ground 0 V
95D	not connected	-	-	Pin left unconnected
96D	X_BOOT3	I/O	VDD_3V3	Boot-Mode 3
97D	X_BOOT4	I/O	VDD_3V3	Boot-Mode 4
98D	X_BOOT5	I/O	VDD_3V3	Boot-Mode 5
99D	GND	-	0	Ground 0 V
100D	X_PWMO	0	VDD_3V3	Pulse Width Modulator Output

3 Jumpers

For configuration purposes, the phyCORE-i.MX35 has 18 solder jumpers, some of which have been installed prior to delivery. *Figure 5* illustrates the numbering of the solder jumper pads, while *Figure 6* and *Figure 7* indicate the location of the solder jumpers on the board. 13 solder jumpers are located on the top side of the module (opposite side of connectors) and 5 solder jumpers are located on the bottom side of the module (connector side). *Table 2* below provides a functional summary of the solder jumpers, their default positions, and possible alternative positions and functions. A detailed description of each solder jumper can be found in the applicable section listed in the table.

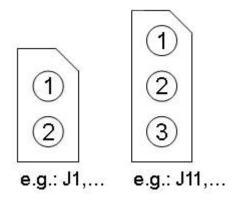


Figure 5: Typical jumper pad numbering scheme

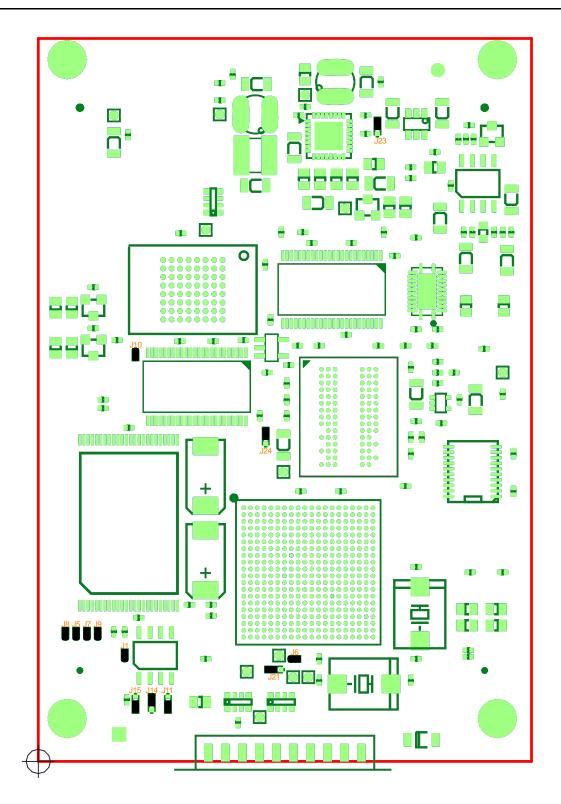


Figure 6: Jumper locations (top view)



Figure 7: Jumper locations (bottom view)

The jumpers (J = solder jumper) have the following functions:

Table 2:Jumper settings

	DEFAULT SETTING			NATIVE SETTING	SEE SECTION
J1	closed	EEPROM U2 is not write protected	open	EEPROM U2 is write protected	7.5.2
J2	closed	10k pull-down resistor to Dip- Switch for boot select X_BOOT2 (NOR/NAND)	open	X_BOOT2 is not connected to Dip-Switch	
J 3	closed	10k pull-down resistor to Dip- Switch for boot select X_BOOT3 (MEM_TYPE[0])	open	X_BOOT3 is not connected to DIP-Switch	6.1.2
J4	closed	10k pull-down resistor to Dip- Switch for boot select X_BOOT4 (MEM_TYPE[1])	open	X_BOOT4 is not connected to DIP-Switch	
J5	closed	Connects NFRB-signal from the i.MX35x to R/#B2 pin of the NAND-Flash	open	NFRB-signal from the i.MX35x is not connected to R/#B2 pin of the NAND- Flash	
J7	closed	Connects NFRB-signal from the i.MX35x to R/#B1 pin of the NAND-Flash	open	NFRB-signal from the i.MX35x is not connected to R/#B1 pin of the NAND- Flash	
8L	closed	Connects NFRB-signal from the i.MX35x to R/#B3 pin of the NAND-Flash	open	NFRB-signal from the i.MX35x is not connected to R/#B3 pin of the NAND- Flash	
J9	closed	Connects NFRB-signal from the i.MX35x to R/#B pin of the NAND-Flash	open	NFRB-signal from the i.MX35x is not connected to R/#B pin of the NAND-Flash	
J10	closed	#CS1_3V3 is connected to NANDF_CE3_3V3 to use alternate function NF_CE3	open	#CS1_3V3 is not connected to NANDF_CE3_3V3	
J11	2 + 3	EEPROM A2 is connected to GND (low)	1 + 2	EEPROM A2 is connected to VDD_3V3 (high)	7.5.1
J13	2 + 3	DS75 A2 is connected to GND (low)	1 + 2	DS75 A2 is connected to VDD_3V3 (high)	
J14	2 + 3	EEPROM A1 is connected to VDD_3V3 (high)	1 + 2	EEPROM A1 is connected to GND (low)	7 5 1
J15	2 + 3	EEPROM A0 is connected to GND (low)	1 + 2	EEPROM A0 is connected to VDD_3V3 (high)	7.5.1
J22	2 + 3	DS75 A1 is connected to VDD_3V3 (high)	1+2	DS75 A1 is connected to GND (low)	

4 Power Requirements

The phyCORE-i.MX35 normally operates off of one voltage supply denoted as **VIN**. The TPS650241 primary on-board voltage regulator operates off of VIN and generates all on-board supply voltages.

The phyCORE-i.MX Carrier Board generates VIN. VIN is sourced from either the wall socket input, or a battery.

The input voltage range of VIN is from 3.6 V to 5,5 V, with a nominal current allowance of at least 3 A.

See Table 1 from section 2 above for applicable VIN power pins on the phyCORE-connector.

Caution!

Connect all VIN input pins to your power supply.

As a general design rule we recommend connecting all GND pins which are neighboring signals being used in the application circuitry.

The i.MX35x CPU is supplied by different power domains.

Table 3:	i.MX35 default	power input voltages
----------	----------------	----------------------

Power Output	Power-Domain	STARTUP VOLTAGE-LEVEL
Power switch 1 of U17	VDD_3V3	3.3 V
Power switch 2 of U17	VDD_1V8	1.8 V
Power switch 3 of U17	VDD_1V375	1.375 V
LDO 1 of U17	LDO_3V3	3.3 V
LDO 2 of U17	LDO_1V5	1.5 V
LDO VDD_ALIVE of U17	VDD_ALIVE	1.2 V

5 Real Time Clock U1 Backup-Voltage

In case of a power fail or a user off event the backup-voltage X_BKUP_SUPPLY provides power to the I²C Real Time Clock U1 (RTC8564JE). In this case a backup coincell could supply the RTC via X_BKUP_SUPPLY.

6 System Configuration

Although most features of the Freescale phyCORE-i.MX35 microcontroller are configured and/or programmed during the initialization routine, other features, which impact program execution, must be configured prior to initialization via pin termination.

6.1 System Startup Configuration

During the reset cycle the i.MX35 processor reads the state of selected controller signals to determine the basic system configuration. The configuration circuitries (pull-up or pull-down resistors) are located on the phyCORE module. They are already set, so no further settings are necessary.

6.1.1 Power-Up-Mode

Note:

The i.MX35x controller has a defined power up sequence. Refer to the i.MX35 Data Sheet, chapter 3.3 Power-Up sequence.

6.1.2 Boot Mode Select

The i.MX35x controller has different boot modes, which can be selected. The system boot mode of the processor is determined by the configuration of the five external input pins, BOOT[4:0].

Table 4: Basic Boot Modes of i.MX35x module

Boot Mode Selection	Boot Mode / Device	
BOOT 1	BOOT 0	
0	0	Internal boot
1	0	External boot
1	1	Enter wait mode

Table 5: Advanced Boot Modes of i.MX35x module

Boot Mode	e Selection	Boot Mode / Device			
BOOT 4	BOOT 3	BOOT 2	BOOT 1	BOOT 0	
0	0	0	1	0	Boot from NOR Flash
0	0	1	1	0	Boot from NAND-Flash
					(3 address cycles)
0	1	1	1	0	Boot from NAND-Flash
					(4 address cycles)
1	0	1	1	0	Boot from NAND-Flash
					(5 address cycles)
1	1	1	1	0	Boot from NAND-Flash
					(6 address cycles)

The phyCORE-i.MX35 module comes with a standard boot configuration of '**00010**', so the system will boot from the 16-bit NOR-Flash at CS0.

7 System Memory

The phyCORE-i.MX35 provides three types of on-board memory:

o 256MByte)
o 32GByte)
o 64MByte)
o 32KByte)

It should be noted that the DDR2-SDRAM has a dedicated memory bus to the i.MX35x microcontroller. The DDR2-SDRAM bus is therefore not made available at the phyCORE-connector X1.

7.1 Memory Model

The i.MX35x memory map is summarized in *Table 6* below. For a detailed view of the memory map please consult the Freescale i.MX35 User's Manual.

Address	CHIP-SELECT	FUNCTION
0x8000 0000 – 0x8FFF FFFF	CSD0	DDR2-SDRAM Bank 0 (U6, U7)
0x9000 0000 – 0x9FFF FFFF	CSD1	not used on phyCORE-i.MX35
0xA000 0000 – 0xA7FF FFFF	WEIM CS0 (flash 128) ¹	NOR-Flash (U9)
0xA800 0000 – 0xAFFF FFFF	WEIM CS1 (flash 64)	multiplexed with NANDF_CE3
0xB000 0000 – 0xB1FF FFFF	WEIM CS2 (SRAM)	used as CSD0
0xB200 0000 – 0xB3FF FFFF	WEIM CS3	not used on phyCORE-i.MX35
0xB400 0000 – 0xB5FF FFFF	WEIM CS4	not used on phyCORE-i.MX35
0xB600 0000 – 0xB7FF FFFF	WEIM CS5	not used on phyCORE-i.MX35
0xBB00 0000 – 0xBB00 11FF	NFC memory region ¹ (4K, NAND Flash)	NAND-Flash (U10)

Table 6: i.MX35 memory map

1. Can be used as a boot memory region

7.2 DDR2-SDRAM (U6-U7)

The phyCORE-i.MX35 has one bank of DDR2-SDRAMs on the i.MX35x module.

The RAM bank is comprised of two 16-bit wide DDR2-SDRAM chips, configured for 32-bit access, and operating at 133MHz. In lower density configurations, U6 and U7 populate the module and are accessed via SDRAM memory bank 0 using chip select signal /CSD0 starting at 0x8000 0000. Actually there is no RAM bank 1 for the i.MX35x. So the /CSD1 chip select line is freed and can be used as /CS3.

Typically the DDR2-SDRAM initialization is performed by a boot loader or operating system following a power-on reset and must not be changed at a later point by any application code. When writing custom code independent of an operating system or boot loader, SDRAM must be initialized by accessing the appropriate SDRAM configuration registers on the i.MX35x controller. *Refer to the i.MX35 User Manual for accessing and configuring these registers.*

7.3 NOR-Flash (U9)

The phyCORE-i.MX35 can be populated with an Intel Strata Flash at U9. This NOR-Flash is connected to /CS0 which is located at memory address 0xA000 0000. The entire Flash can be write protected by pulling the x_{FL} WP signal, located at the phyCORE-connector X1 on pin 62B, low.

The following NOR-Flash devices can be used on the phyCORE-i.MX35:

MANUFACTURER	NOR FLASH P/N	DENSITY (MBYTE)
Intel/Numonyx	PC28F640P33	8
Intel/Numonyx	PC28F128P33	16
Intel/Numonyx	PC28F256P33	32

Table 7: Compatible NOR Flash devices

7.4 NAND Flash Memory (U10)

Use of Flash as non-volatile memory on the phyCORE-i.MX35 provides an easily reprogrammable means of code storage. The following Flash devices can be used on the phyCORE-i.MX35:

Table 8: Compatible NAND Flash devices

MANUFACTURER	NAND FLASH P/N	DENSITY (MBYTE)
Numonyx	NAND01G-xxx	1024
Numonyx	NAND02G-xxx	2048

Additionally, any parts that are footprint (TSOP) and functionally compatible with the NAND Flash devices listed above may also be used with the phyCORE-i.MX35.

These Flash devices are programmable with 3,3 V. No dedicated programming voltage is required.

As of the printing of this manual these NAND Flash devices generally have a life expectancy of at least 100,000 erase/program cycles and a data retention rate of 10 years.

7.5 I²C EEPROM (U2)

The phyCORE-i.MX35 is populated with a ST 24W32C¹ non-volatile 32 KByte EEPROM (U2) with an I²C interface to store configuration data or other general purpose data. This device is accessed through I²C port 1 on the i.MX35x. The serial clock signal and serial data signal for I²C port 1 are made available at the phyCORE-connector as X_I2C1_DAT on X1 pin 85C and X_I2C1_CLK on X1 pin 85D.

Three solder jumpers are provided to set the lower address bits: J11, J14, and J15. *Refer to section 7.5.1 for details on setting these jumpers.*

Write protection to the device is accomplished via jumper J1. By default this jumper is closed, allowing write access to the EEPROM. Removing this jumper will cause the EEPROM to enter write protect mode, thereby disabling write access to the device. *Refer to section 7.5.2 for further details on setting this jumper.*

¹: See the manufacturer's data sheet for interfacing and operation.

7.5.1 Setting the EEPROM Lower Address Bits (J11, J14, J15)

The 32KB I²C EEPROM populating U2 on the phyCORE-module has the capability of configuring the lower address bits A0, A1, and A2. The four upper address bits of the device are fixed at '1010' (see ST 24W32C data sheet). The remaining three lower address bits of the seven bit I²C device address are configurable using jumpers J11, J14 and J15. J15 sets address bit A0, J14 address bit A1, and J11 address bit A2.

Table 9 below shows the resulting seven bit I²C device address for the eight possible jumper configurations.

U2 I ² C DEVICE ADDRESS	J11	J14	J15
1010 010	2 + 3	2 + 3	2 + 3
1010 011	2 + 3	2 + 3	1 + 2
1010 000	2 + 3	1 + 2	2 + 3
1010 001	2 + 3	1 + 2	1 + 2
1010 110	1 + 2	2 + 3	2 + 3
1010 111	1 + 2	2 + 3	1 + 2
1010 100	1 + 2	1 + 2	2 + 3
1010 101	1 + 2	1 + 2	1 + 2

Table 9:U2 EEPROM I²C address via J11, J14, and J15¹

¹ Defaults are in **bold blue** text

7.5.2 EEPROM Write Protection Control (J1)

Jumper J1 controls write access to the EEPROM (U2) device. Closing this jumper allows write access to the device, while opening this jumper enables write protection.

The following configurations are possible:

 Table 10:
 EEPROM write protection states via J1¹

EEPROM WRITE PROTECTION STATE	J1
Write access allowed	closed
Write protected	open

¹ Defaults are in **bold blue** text

8 RS-232

8.1 RS232 Transceiver (U12)

One high-speed RS-232 transceiver supporting 460kbps data rates populates the phyCOREi.MX35 at U12. This device converts the signal levels for:

• RXD/TXD/RTS/CTS (UART2)

The RS-232 interface enables connection of the module to a COM port on a host-PC. In this instance the RxD line of the transceiver is connected to the TxD line of the COM port; while the TxD line of the transceiver is connected to the RxD line of the COM port. The ground potential of the phyCORE-i.MX35 circuitry needs to be connected to the applicable ground pin on the COM port as well.

The phyCORE-i.MX35 does not convert the remaining available UART (UART1) provided by the i.MX35x MCU to RS-232 levels. The TTL level signals are made available at the phyCORE-connector X1 (*see Table 1*). External RS-232 transceivers must be supplied by the user if the additional UART requires RS-232 levels.

The maximum baud rate of UART2 is limited to 460,800 bps when used with the on-board MAX3380 RS-232 transceiver.

8.1.1 UART2 Routing (RN4)

RN4 is used to route the signals of UART2 serial interface through the RS-232 transceiver or around the RS-232 transceiver when populated. When RN4 is not populated UART2_RXD_TTL, UART2_TXD_TTL, UART2_RTS_TTL and UART2_CTS_TTL are routed through the RS-232 transceiver U12 and come out as X_UART2_RXD, X_UART2_TXD, x_UART2_RTS and x_UART2_CTS at the phyCORE-connector pins X1 pin 22D, X1 pin 23D, X1 pin 25D, X1 pin 26D. If U12 does not populate the module, RN4 is populated to route the TTL level signals to these same pins.

The standard phyCORE-i.MX35 module will have U12 populated, thereby routing the RS-232 level signals to the phyCORE-connector. Be sure the phyCORE-i.MX35 configuration you are working with before interfacing these signals outside of the module as incorrect voltage levels will likely cause damage to on-board and off-board components.

The following configurations are possible:

Table 11: RN4 UART2 signal routing¹

SIGNAL CONFIGURATION	RN4
X_UART2_RXD, X_UART2_TXD, X_UART2_RTS, X_ UART2_CTS as RS-232 level signals at X1 pin 22D, X1 pin 23D, X1 pin 25D and X1 pin 26D	not populated
X_UART2_RXD, X_UART2_TXD, X_UART2_RTS, X_ UART2_CTS as TTL level signals at X1 pin 22D, X1 pin 23D, X1 pin 25D and X1 pin 26D	populated

¹ Defaults are in **bold blue** text

9 USB

The i.MX35x microcontroller has one USB 2.0 Host interface and one USB 2.0 OTG interface both with integrated USB-Phys.

9.1 USB-OTG

With the phyCORE-i.MX35 USB-OTG is realized with the internal high-speed USB-OTG-Phy of the i.MX35x. This Phy supports data rates up to 480Mbps. An external USB Standard-A (for USB host), USB Standard-B (for USB device), or USB mini-AB (for USB OTG) connector and a 5 V VBUS power supply is all that is needed to interface the phyCORE-i.MX35 USB OTG functionality. The applicable interface signals (D+/D-/VBUS/ID) can be found in the phyCORE-connector pin-out *Table 1*.

Also the whole USB-OTG interface is connected to the phyCORE-connector so that there is the possibility to use different USB-Phys.

9.2 USB-Host

With the phycore-i.MX35 USB-Host is realized with the internal full-speed USB-Host-Phy of the i.MX35x microcontroller. This Phy supports data rates up to 12Mbps. An external USB Standard-A (for USB host), USB Standard-B (for USB device), or USB mini-AB (for USB OTG) connector is all that is needed to interface the phyCORE-i.MX35 USB Host functionality. The applicable interface signals (D+/D-) can be found in the phyCORE-connector pin-out *Table 1*.

10 Ethernet Controller / Ethernet-Phy (U5)

Connection of the phyCORE-i.MX35 to the world wide web (WWW) or a local area network (LAN) is possible with the internal 10/100 Mbps Fast Ethernet controller. With this Ethernet controller an external transceiver interface and transceiver function are required to complete the interface to the media. Therefor the i.MX35x uses an Ethernet-Phy (U5).

The Ethernet-Phy provides MII/RMII/SMII interfaces to transmit and receive data. In addition the PHY also supports HP Auto-MDIX technology, eliminating the need for the consideration of a direct connect LAN cable, or a cross-over patch cable. It detects the TX and RX pins of the connected device and automatically configures the PHY TX and RX pins accordingly. The Ethernet-Phy also features LinkMD cable diagnostics, which allows detection of common cabling plant problems such as open and short circuits.

The physical memory area for the Fast Ethernet controller is defined in Table 12.

Table 12: Fast Ethernet controller memory map

Address	FUNCTION			
0x5003_8 + 0x000-1FF	Control/Status Registers			
0x5003_8 + 0x200-3FF	MIB Block Counters			

Connection to an external Ethernet transformer should be done using very short signal traces. The TPI+/TPI- and TPO+/TPO- signals should be routed as 100 Ohm differential pairs. The same applies for the signal lines after the transformer circuit. The carrier board layout should avoid any other signal lines crossing the Ethernet signals.

Caution!

Please note the datasheet of the Ethernet-Phy when creating the Ethernet transformer circuitry.

11 CAN

The i.MX35x provides two CAN interfaces (protocol specification version 2.0B). Its programmable bit rate can be up to 1Mbyte/sec. All available signals (X_CAN1_RX, X_CAN1_TX, X_CAN2_RX, X_CAN2_TX) are connected to the molex connector.

To use the CAN functionality of the i.MX35x you need an additional CAN transceiver and a CAN connector for each of the two CAN interfaces which are provided by the phyCORE-i.MX35 module.

Table 13: CAN controller memory map

Address	Funktion		
0x53FE_4000 - 0x53FE_7FFF	Controller Area Network (CAN)-1		
0x53FE_8000 - 0x53FE_BFFF	Controller Area Network (CAN)-2		

For further details of the Controller Area Network of i.MX35x please refer to the IMX35 Reference Manual, chapter 24, Controller Area Network (FlexCAN).

12 JTAG Interface (X2)

The phyCORE-i.MX35 is equipped with a JTAG interface for downloading program code into the external flash, internal controller RAM or for debugging programs currently executing. The JTAG interface extends out to a 2.0 mm pitch pin header at X2 on the edge of the module PCB. *Figure 8* and *Figure 9* show the position of the debug interface (JTAG connector X2) on the phyCORE-module.

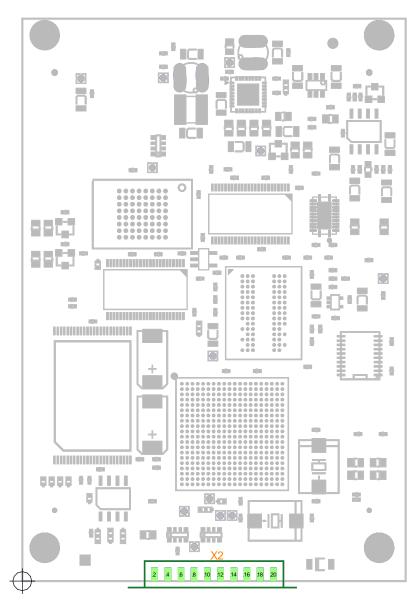
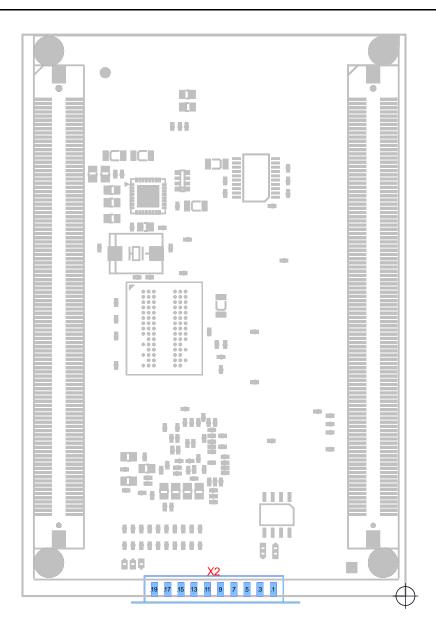



Figure 8: JTAG interface at X2 (top view)

Figure 9: JTAG interface at X2 (bottom view)

Pin 1 of the JTAG connector X2 is on the connector side of the module. Pin 2 of the JTAG connector is on the controller side of the module.

Note:

The JTAG connector X2 only populates phyCORE-i.MX35 modules with order code PCM-043-D. JTAG connector X2 is not populated on phyCORE modules with order code PCM-043. However, all JTAG signals are also accessible at the phyCORE-connector X1 (Molex connectors). We recommend integration of a standard (2.54 mm pitch) pin header connector in the user target circuitry to allow easy program updates via the JTAG interface. See *Table 14 for details on the JTAG signal pin assignment*.

Signal	PIN Row*		Signal	
	Α	В		
VCC(VDD_3V3)	2	1	VTREF (VDD_3V3 via 100 Ohm)	
GND	4	3	#X_CPU_TRST	
GND	6	5	X_CPU_TDI	
GND	8	7	X_CPU_TMS	
GND	10	9	X_CPU_TCK	
GND	12	11	X_CPU_RTCKRTCK (10k Ohm pulldown)	
GND	14	13	X_CPU_TDO	
GND	16	15	#X_RESET_MCU	
GND	18	17	#X_CPU_DE	
GND	20	19	J_DBGACK (10k Ohm pulldown)	

Table 14: JTAG connector X2 signal assignment

*Note:

Row A is on the controller side of the module and row B is connector side of the module

PHYTEC offers a JTAG-Emulator adapter (order code JA-002) for connecting the phyCOREi.MX35 to a standard emulator. The JTAG-Emulator adapter extends the signals of the module's JTAG connector to a standard ARM connector with 2.54 mm pin pitch. The JA-002 therefore functions as an adapter for connecting the module's non-ARM-compatible JTAG connector U15 to standard Emulator connectors.

13 Technical Specifications

The physical dimensions of the phyCORE-i.MX35 are represented in Figure 10. The module's profile is approximately **8.6 mm** thick, with a maximum component height of **4.1 mm** on the bottom (connector) side of the PCB and approximately **3.25 mm** on the top (microcontroller) side. The board itself is approximately **1.25 mm** thick.

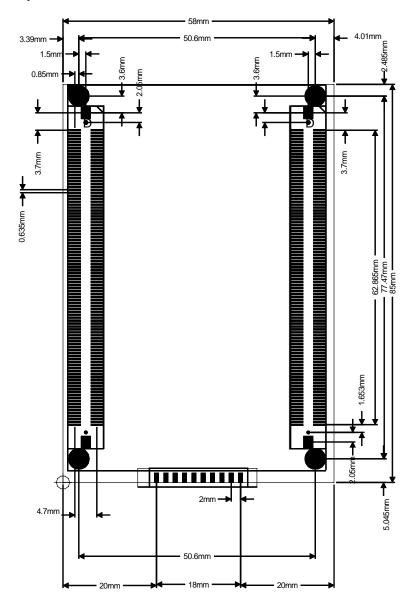


Figure 10: Physical dimensions of phyCORE-i.MX35 module

Additional specifications :

- Dimensions:
- Weight:
- Storage temperature:
- Operating temperature:
- Humidity:
- Operating voltage:
- Power consumption:
 VIN / **TBD** mA typical

85 mm x 58 mm approximately 30 g with all optional components mounted on the circuit board -55°C to +125°C

0°C to +70°C (standard) -40°C to +85°C (optional) 95 % r.F. not condensed

VIN 3.6 V to 5. 5V

Conditions: **VIN = 3.6 to 5.5 V** 32 MByte Flash, 128MB DDR2-RAM, 1GB NAND-Flash, Ethernet, 532 MHz CPU frequency at 20°C

These specifications describe the standard configuration of the phyCORE-i.MX35 as of the printing of this manual.

14 Hints for Handling the phyCORE-i.MX35

Removal of various components, such as the microcontroller and the standard quartz, is not advisable given the compact nature of the module. Should this nonetheless be necessary, please ensure that the board as well as surrounding components and sockets remain undamaged while desoldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

15 The phyCORE i.MX35 on the i.MX Carrier Board

In this chapter you will find the information about using the phyCORE-i.MX35 module with the phyCORE i.MX Carrier Board.

You will get an overview of how the phyCORE-i.MX35 module works with the phyCORE-i.MX Carrier Board, how both boards are connected together over the phyMAPPER and you will also find all settings that have to be done for a speedy and secure start-up of your i.MX35 module.

In this chapter you will only find specialized information of how the phyCORE-i.MX35 module works with the phyCORE-i.MX Carrier Board. For further information about the Carrier Board please refer to the i.MX Carrier Board Hardware Manual.

15.1 Concept of the phyCORE-i.MX Development Kits

Phytec decided to use one i.MX Carrier Board for different i.MX modules. Because every i.MX module has different features and therefore a different pinning it is necessary to map the signals of the modules to the right place on the Carrier Board.

For this every i.MX module comes with a phyMAPPER that is mapping the signals of the i.MX module to the i.MX Carrier Board.

An example of the concept is shown in Figure 11 below. For further information about the concept of the i.MX Carrier Board refer to the i.MX Carrier Board Hardware Manual.

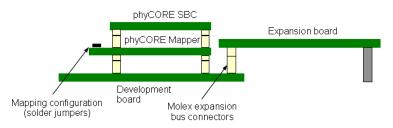


Figure 11: phyCORE-i.MX35 Carrier Board connection using the phyMAP-i.MX35

15.2 phyMAP-i.MX35

The phyMAP-i.MX35 is responsible for mapping the signals from the various phyCORE-i.MX modules to the phyCORE-i.MX Carrier Board. Signal differences at the connectors on the phyCORE-i.MX modules, along with signal differences between the phyCORE-i.MX module connectors and i.MX Carrier Board connector do not allow for direct connection of the phyCORE-i.MX modules into a single, standardized Carrier Board. To allow for the use of a single Carrier Board, despite the signal differences, the phyMAP-i.MX35 board serves as the gateway to properly map signals from the i.MX Carrier Board Molex connectors to the various phyCORE-i.MX module connectors.

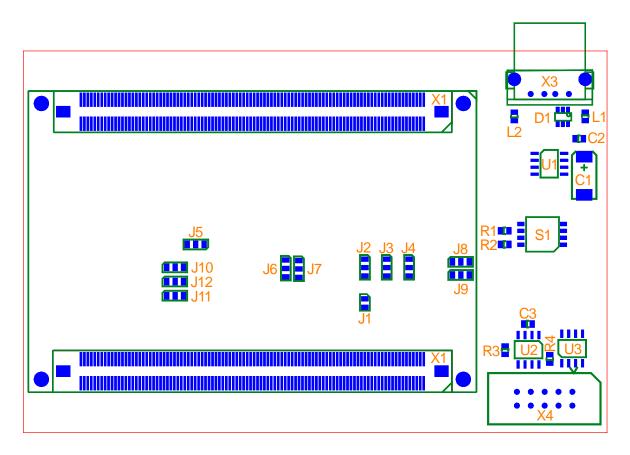


Figure 12: phyMAP-i.MX35 top view

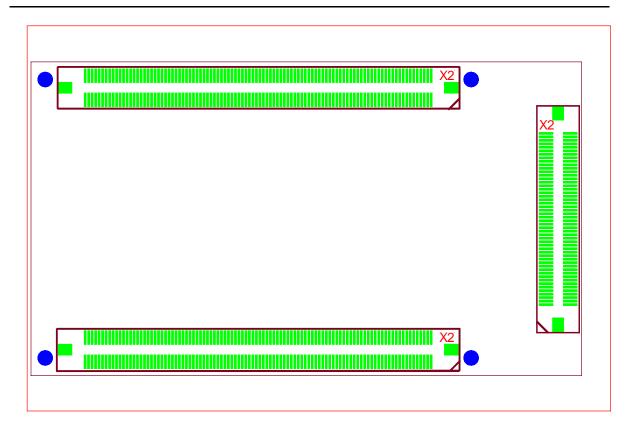
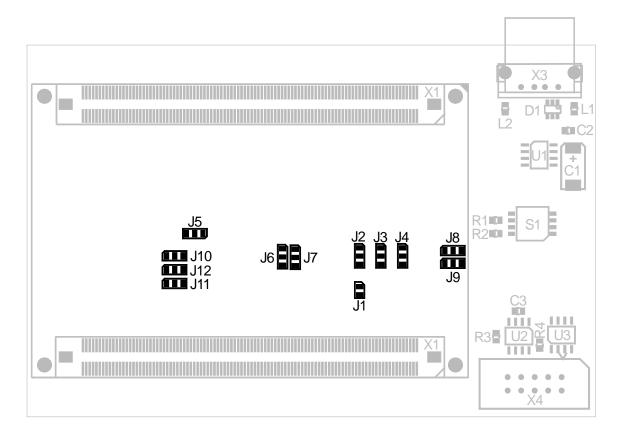



Figure 13: phyMAP-i.MX35 bottom view

Figure 14: umper location on PMA-005

There are 12 solder jumpers (0805) available on the phyMAP-i.MX35 Mapper. They are used to set different functions partially in relation with the i.MX Carrier Board.

An individual description of the jumpers and a list of all jumper settings you will find subsequent.

J1 With jumper J1 the two FETs Q17 and Q18 on the i.MX Carrier Board can be enabled or disabled. They allow a current flow to charge a battery connected to X21 on the Carrier Board. If J1 is opened there is no current flow. If J1 is closed the FETs and also the battery charge path are active.

- J2 If this jumper is set to 1+2 the FETs Q13 and Q14 of the i.MX Carrier Board are disabled. In this case there is no power supply connection from the wall charger or POE to VIN. If J2 is set to 2+3 the power supply is connected to VIN. It is necessary to set J2 to 1+2 if you want to supply your board with a battery.
- J3 If this jumper is set to 1+2 the FETs Q15 and Q16 of the i.MX Carrier Board are disabled. In this case there is no power supply connection from the battery connector X21 to VIN. If J3 is set to 2+3 the battery supply is connected to VIN. It is necessary to set J2 to 1+2 if you want to supply your board via the wall charger or POE.
- J4 With this jumper you can select the backup power supply of the module. If it is set to 1+2 the backup power supply device is the goldcap C161 of the Carrier Board. If J4 is set to 2+3 the backup power is provided by a Li-Cell at connector X20 of the Carrier Board.
- J5 Selects whether the One-Wire or the PMIC-Ready function of the i.MX35 is used. Setting 1+2 connects the One-Wire function to the baseboard connector, setting 2+3 connects the PMIC-Ready function to the baseboard.
- J6 This jumper selects where the signal X_USBH2_OC of the i.MX35 is connected to. If the USB-Host interface of the phyMAP-i.MX35 mapper is used this jumper is set to 2+3. If the USB-Host interface of the i.MX Carrier Board is used the jumper is set to 1+2.
- J7 This jumper selects where the signal X_USBH2_PWR of the i.MX35 is connected to. If the USB-Host interface of the phyMAP-i.MX35 mapper is used this jumper is set to 2+3. If the USB-Host interface of the i.MX Carrier Board is used the jumper is set to 1+2.
- J8 This jumper selects where the signal X_USBPHY2_DM of the i.MX35 is connected to. If the USB-Host interface of the phyMAP-i.MX35 mapper is used this jumper is set to 2+3. If the USB-Host interface of the i.MX Carrier Board is used the jumper is set to 1+2.
- J9 This jumper selects where the signal X_USBPHY2_DP of the i.MX35 is connected to. If the USB-Host interface of the phyMAP-i.MX35 mapper is used this jumper is set to 2+3. If the USB-Host interface of the i.MX Carrier Board is used the jumper is set to 1+2.
- J10 Jumper J10 selects whether the signal X_SD2_DATA3 is used as data3 signal of SD2 interface on the i.MX Carrier Board or if the multiplexed CAN1_TX signal is used for the additional CAN interface on the i.MX35 mapper board. If the jumper is set to 1+2 the SD2 signal is connected to the baseboard. If the jumper is set to 2+3 the CAN signal is used with the CAN interface on the mapper.

- J11 Jumper J11 selects whether the signal X_SD2_DATA2 is used as data2 signal of SD2 interface on the i.MX Carrier Board or if the multiplexed CAN1_RX signal is used for the additional CAN interface on the i.MX35 mapper board. If the jumper is set to 1+2 the SD2 signal is connected to the baseboard. If the jumper is set to 2+3 the CAN signal is used with the CAN interface on the mapper.
- J12 Jumper J12 selects whether the signal X_SD2_DATA1 is used as data1 signal of SD2 interface on the i.MX Carrier Board or if the multiplexed GPIO is used for the additional CAN interface on the i.MX35 mapper board to enable or disable the CAN function. If the jumper is set to 1+2 the SD2 signal is connected to the baseboard. If the jumper is set to 2+3 the GPIO signal is used with the CAN interface on the mapper.

JUMPER	Setting	DESCRIPTION
J1	open closed	Battery charger path on PCM-970 not active Battery charger path on PCM-970 active
J2	1+2 2+3	FETs Q13, Q14 on PCM-970 disabled FETs Q13, Q14 on PCM-970 enabled
J3	1+2 2+3	FETs Q15, Q16 on PCM-970 disabled FETs Q15, Q16 on PCM-970 enabled
J4	1+2 2+3	x_BKUP_SUPPLY supplied by X_VBAT x_BKUP_SUPPLY supplied by X_LICELL
J5	1+2 2+3	X_OWIRE connected to X_1WIRE X_OWIRE connected to X_PMIC_RDY
J6	1+2 2+3	USB Host on Mapper is not used USB Host on Mapper is used
J7	1+2 2+3	USB Host on Mapper is not used USB Host on Mapper is used
J8	1+2 2+3	USB Host on Mapper is not used USB Host on Mapper is used
J9	1+2 2+3	USB Host on Mapper is not used USB Host on Mapper is used
J10	1+2 2+3	CAN on Mapper is not used CAN on Mapper is used
J11	1+2 2+3	CAN on Mapper is not used CAN on Mapper is used
J12	1+2 2+3	X_SD2_DATA1 is mapped to PCM-970 X_SD2_DATA1 is used as GPIO for CAN enable

Table 15: Jumper settings of PMA-005

15.2.2 phyMAP-i.MX35 signal mapping

In the following table you will find all signals of the phyCORE-i.MX35 module (PCM-043) connected through the phyMAP-i.MX35 mapper (PMA-005) to the phyCORE-i.MX Carrier Board (PCM-970). Take care that there are some signals connected to jumpers on the phyMAP-i.MX35 mapper. With this signals it depends on the individual jumper setting where this signals are connected to. This signals are in **bold** text.

SIGNAL NAME ON	X1 P IN #	MAPPED	X2 PIN #	SIGNAL NAME ON I.MX
PMA-005 MAPPER		то		CARRIER BOARD
A0_3V3	35B	<->	27B	x_A0
A1_3V3	36B	<->	28A	x_A1
A2_3V3	36A	<->	28B	x_A2
A3_3V3	37B	<->	29A	x_A3
A4_3V3	38A	<->	30A	x_A4
A5_3V3	39A	<->	30B	x_A5
A6_3V3	38B	<->	31A	x_A6
A7_3V3	40A	<->	31B	x_A7
A8_3V3	40B	<->	32B	x_A8
A9_3V3	41B	<->	33A	x_A9
A10_3V3	41A	<->	33B	x_A10
A11_3V3	42B	<->	34A	x_A11
A12_3V3	43A	<->	35A	x_A12
A13_3V3	44A	<->	35B	x_A13
A14_3V3	43B	<->	36A	x_A14
A15_3V3	45A	<->	36B	x_A15
A16_3V3	45B	<->	37B	x_A16
A17_3V3	46B	<->	38A	x_A17
A18_3V3	46A	<->	38B	x_A18
A19_3V3	47B	<->	39A	x_A19
A20_3V3	48A	<->	40A	x_A20
A21_3V3	49A	<->	40B	x_A21
A22_3V3	48B	<->	41A	x_A22
A23_3V3	50A	<->	41B	x_A23
A24_3V3	50B	<->	42B	x_A24
A25_3V3	51B	<->	43A	x_A25
BCLK_3V3	35A	<->	4E	x_EXP005

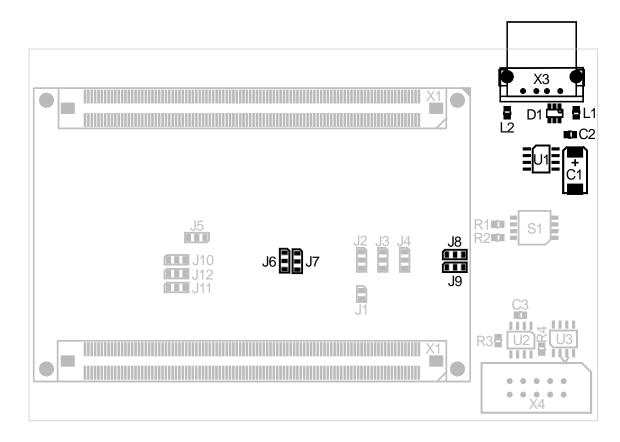
Table 16: PMA-005 mapping list

D0	51A	<->	43B	x_D0
D1	52B	<->	44A	x_D1
D2	53A	<->	45A	x_D2
D3	54A	<->	45B	x_D3
D4	53B	<->	46A	x_D4
D5	55A	<->	46B	x_D5
D6	55B	<->	47B	x_D6
D7	56B	<->	48A	x_D7
D8	56A	<->	48B	x_D8
D9	57B	<->	49A	x_D9
D10	58A	<->	50A	x_D10
D11	59A	<->	50B	x_D11
D12	58B	<->	51A	x_D12
D13	60A	<->	51B	x_D13
D14	60B	<->	52B	x_D14
D15	61B	<->	53B	x_D15
EB0_3V3	31B	<->	55B	x_/EB0
EB1_3V3	31A	<->	56B	x_/EB1
ECB_WAIT_3V3	33B	<->	5E	x_EXP006
LBA_3V3	34A	<->	54A	x_LBA
VDD_ALIVE	1B	<->	44E	x_EXP069
VDD_1V8	61A	<->	43E	x_EXP067
X_BKUP_SUPPLY	6C	<->	6C	x_VBAT
X_BOOT0	98C	<->	53C	x_BOOT_MODE0
X_BOOT1	99C	<->	53D	x_BOOT_MODE1
X_BOOT2	98D	<->	100B, 36F	x_switch, x_EXP057
X_BOOT3	96D	<->	37F	x_EXP058
X_BOOT4	97D	<->	38F	x_EXP060
X_CAN2_RX	31D	<->	38D	x_CAN_RXD
X_CAN2_TX	30D	<->	37D	x_CAN_TXD
X_CAPTURE	27D	<->	50F	x_EXP079
X_CLKO	100B	<->	47F	x_EXP074
X_COMPARE	28D	<->	50E	x_EXP078
X_CPU_RTCK	40C	<->	42D	x_CPU_RTCK
X_CPU_TCK	38D	<->	40D	x_CPU_TCK
X_CPU_TDI	40D	<->	39C	x_CPU_TDI
X_CPU_TDO	41D	<->	40C	x_CPU_TDO
X_CPU_TMS	42D	<->	41C	x_CPU_TMS

© PHYTEC Messtechnik GmbH 2009 L-734e_0

X_CSI_D6	78A	<->	73A	x_CSI_D0
X_CSI_D7	78B	<->	74A	x_CSI_D1
X_CSI_D8	79A	<->	75A	x_CSI_D2
X_CSI_D9	80A	<->	75B	x_CSI_D3
X_CSI_D10	80B	<->	76A	x_CSI_D4
X_CSI_D11	81A	<->	76B	x_CSI_D5
X_CSI_D12	81B	<->	77B	x_CSI_D6
X_CSI_D13	82B	<->	78A	x_CSI_D7
X_CSI_D14	83A	<->	78B	x_CSI_D8
X_CSI_D15	83B	<->	79A	x_CSI_D9
X_CSI_HSYNC	85B	<->	73B	x_CSI_HSYNC
X_CSI_MCLK	84A	<->	69A	x_CSI_MCLK
X_CSI_PIXCLK	86A	<->	71B	x_CSI_PCLK
X_CSI_VSYNC	85A	<->	72B	x_CSI_VSYNC
X_CSPI1_MISO	87D	<->	25E	x_EXP038
X_CSPI1_MOSI	86D	<->	24E	x_EXP037
X_CSPI1_SCLK	86C	<->	23E	x_EXP035
X_CSPI1_SPI_RDY	89C	<->	27F	x_EXP042
X_CSPI1_SS0	88C	<->	26F	x_EXP041
X_CSPI1_SS1	88D	<->	26E	x_EXP040
X_CSPI2_MISO	90D	<->	96B	x_MISO
X_CSPI2_MOSI	90C	<->	95B	x_MOSI
X_CSPI2_SCLK	91C	<->	97B	x_SPICLK
X_CSPI2_SPI_RDY	91D	<->	28F	x_EXP044
X_CSPI2_SS0	92D	<->	98B	x_CE
X_EN_LDO1_2	18D	<->	43F	x_EXP068
X_EN_VDD_1V8	16D	<->	41F	x_EXP065
X_EN_VDD_1V375	17D	<->	42F	x_EXP066
X_EN_VDD_3V3	15D	<->	40F	x_EXP063
X_ETH_LINK	33C	<->	32D	x_ETH_/LED1
X_ETH_RX+	35D	<->	30C	x_ETH_TPI+
X_ETH_RX-	35C	<->	31C	x_ETH_TPI-
X_ETH_SPEED	34C	<->	33D	x_ETH_/LED2
X_ETH_TX+	36D	<->	30D	x_ETH_TPO+
X_ETH_TX-	36C	<->	31D	x_ETH_TPO-
X_FEC_COL	76B	<->	16E	x_EXP024
X_FEC_CRS	73B	<->	15E	x_EXP022
X_FEC_MDC	73A		15F	x EXP023

X_FEC_MDIO	72B	<->	16F	x_EXP025
X_FEC_RDATA0	75A	<->	8E	x_EXP011
X_FEC_RDATA1	70B	<->	9E	x_EXP013
X_FEC_RDATA2	71A	<->	10E	x_EXP014
X_FEC_RDATA3	71B	<->	11E	x_EXP016
X_FEC_RX_CLK	76A	<->	6E	x_EXP008
X_FEC_RX_DV	75B	<->	13E	x_EXP019
X_FEC_RX_ERR	70A	<->	14E	x_EXP021
X_FEC_TDATA0	86B	<->	7F	x_EXP010
X_FEC_TDATA1	87B	<->	8F	x_EXP012
X_FEC_TDATA2	88B	<->	10F	x_EXP015
X_FEC_TDATA3	69A	<->	11F	x_EXP017
X_FEC_TX_CLK	74A	<->	6F	x_EXP009
X_FEC_TX_EN	89A	<->	12F	x_EXP018
X_FEC_TX_ERR	77B	<->	13F	x_EXP020
X_FSR	48C	<->	73D	x_EXP089
X_FST	44C	<->	74C	x_EXP090
X_FUSE_VDD	7D	<->	6D	x_iMX_FUSE
X_GPIO2_6	96A	<->	58C, 76D	X_LED, x_EXP094
X_GPIO2_7	98A, (38C)	<->	75D	x_EXP092
X_GPIO2_23	99A	<->	95A, 77D	x_SD_W, x_EXP095
X_GPIO2_24	100A	<->	94A, 78D	x_SD_D, x_EXP097
X_HCKT	45C	<->	75C	x_EXP091
X_I2C1_CLK	85D	<->	39E	x_EXP061
X_I2C1_DAT	85C	<->	40E	x_EXP062
X_I2C3_SCL	83C	<->	99A	x_I2C_SCL
X_I2C3_SDA	84C	<->	100A	x_I2C_SDA
X_JTAG_MODE	43D	<->	43C	x_CPU_SJC_MOD
X_KEY_COL0	90A	<->	48D	x_KEY_COL0
X_KEY_COL1	91A	<->	49C	x_KEY_COL1
X_KEY_COL2	93A	<->	50C	x_KEY_COL2
X_KEY_COL3	94A	<->	50D	x_KEY_COL3
X_KEY_ROW0	90B	<->	45C	x_KEY_ROW0
X_KEY_ROW1	91B	<->	45D	x_KEY_ROW1
X_KEY_ROW2	92B	<->	46C	x_KEY_ROW2
X_KEY_ROW3	93B	<->	46D	x_KEY_ROW3
X_LCD_CLS	8B	<->	8B	x_LC_D3_CLS
X_LCD_CONTRAST	7B	<->	7B	x_LC_CONTRAST


X_LCD_DRDY	10A	<->	10A	x_LC_DRDY0
X_LCD_FPSHIFT	10B	<->	10B	x_LC_BCLK
X_LCD_HSYNC	5B	<->	11A	x_LC_FPLINE
X_LCD_LD0	13A	<->	13A	x_LC_D0
X_LCD_LD1	13B	<->	13B	x_LC_D1
X_LCD_LD2	14A	<->	14A	x_LC_D2
X_LCD_LD3	15A	<->	15A	x_LC_D3
X_LCD_LD4	15B	<->	15B	x_LC_D4
X_LCD_LD5	16A	<->	16A	x_LC_D5
X_LCD_LD6	16B	<->	16B	x_LC_D6
X_LCD_LD7	17B	<->	17B	x_LC_D7
X_LCD_LD8	18A	<->	18A	x_LC_D8
X_LCD_LD9	18B	<->	18B	x_LC_D9
X_LCD_LD10	19A	<->	19A	x_LC_D10
X_LCD_LD11	20A	<->	20A	x_LC_D11
X_LCD_LD12	20B	<->	20B	x_LC_D12
X_LCD_LD13	21A	<->	21A	x_LC_D13
X_LCD_LD14	21B	<->	21B	x_LC_D14
X_LCD_LD15	22B	<->	22B	x_LC_D15
X_LCD_LD16	23B	<->	23B	x_LC_D16
X_LCD_LD17	23A	<->	23A	x_LC_D17
X_LCD_LD18	24A	<->	17F	x_EXP026
X_LCD_LD19	25A	<->	18F	x_EXP028
X_LCD_LD20	25B	<->	20F	x_EXP031
X_LCD_LD21	26A	<->	19E	x_EXP029
X_LCD_LD22	26B	<->	20E	x_EXP030
X_LCD_LD23	27B	<->	21F	x_EXP033
X_LCD_REV	8A	<->	8A	x_LC_D3_REV
X_LCD_SPL	9A	<->	9A	x_LC_D3_SPL
X_LCD_VSYNC	5A	<->	5B	x_LC_FPFRAME
X_MLB_CLK	45D	<->	71A, 23F	x_SNAPSHOT, x_EXP036
X_MLB_DAT	46D	<->	70A, 25F	x_TRIGGER, x_EXP039
X_MLB_SIG	47D	<->	70B, 21E	x_CSI_ENABLE, x_EXP032
X_MVDD_BKUP	13C	<->	45E	x_EXP070
X_OWIRE	3B	<->	58D	x_1Wire
X_PVCC_BKUP	14C	<->	46E	x_EXP072
X_PWMO	100D	<->	46F	x_EXP073
X_SCKR	46C	<->	76C	x_EXP093
X_SCKT	43C	<->	73C	x_EXP088
X_SCK4	23C	<->	21D	x_BITCLK

X_SD1_CLK 70D <-> 91A x_SD1_CL X_SD1_CMD 68D <-> 90B x_SD1_CM X_SD1_DATA0 68C <-> 91B x_SD1_DA X_SD1_DATA1 69C <-> 92B x_SD1_DA X_SD1_DATA2 70C <-> 93A x_SD1_DA X_SD1_DATA2 70C <-> 93B x_SD1_DA X_SD2_CLK 50C <-> 68D x_EXP080 X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA2 52D <-> 70D x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC	ID TA0 TA1 TA2 TA3 IN OUT
X_SD1_DATA0 68C <-> 91B x_SD1_DA X_SD1_DATA1 69C <-> 92B x_SD1_DA X_SD1_DATA2 70C <-> 93A x_SD1_DA X_SD1_DATA3 71C <-> 93B x_SD1_DA X_SD2_CLK 50C <-> 68C x_EXP080 X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA1 51D <-> 70D x_EXP084 X_SD2_DATA2 52D <-> 70D x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	ITA0 ITA1 ITA2 ITA3 IN OUT
X_SD1_DATA1 69C <-> 92B x_SD1_DA X_SD1_DATA2 70C <-> 93A x_SD1_DA X_SD1_DATA3 71C <-> 93B x_SD1_DA X_SD2_CLK 50C <-> 68C x_EXP080 X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA1 51D <-> 70D x_EXP084 X_SD2_DATA2 52D <-> 71C x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SD1_DATA2 70C <-> 93A x_SD1_DATA2 X_SD1_DATA3 71C <-> 93B x_SD1_DA X_SD2_CLK 50C <-> 68C x_EXP080 X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	ITA2 ITA3
X_SD1_DATA3 71C > 93B x_SD1_DA X_SD2_CLK 50C > 68C x_EXP080 X_SD2_CMD 51C > 68D x_EXP081 X_SD2_DATA0 50D > 69C x_EXP082 X_SD2_DATA1 51D > 70C x_EXP083 X_SD2_DATA2 52D > 70D x_EXP084 X_SD2_DATA3 53D > 71C x_EXP085 X_SRXD4 26C > 20D x_SDATA_ X_STXFS4 24C > 23D x_SYNC X_TOUT 8D > 48E x_EXP075	IN
X_SD2_CLK 50C <-> 68C x_EXP080 X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SD2_CMD 51C <-> 68D x_EXP081 X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SD2_DATA0 50D <-> 69C x_EXP082 X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SD2_DATA1 51D <-> 70C x_EXP083 X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SD2_DATA2 52D <-> 70D x_EXP084 X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	.IN _OUT
X_SD2_DATA3 53D <-> 71C x_EXP085 X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_SRXD4 26C <-> 22D x_SDATA_ X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	IN OUT
X_STXD4 25C <-> 20D x_SDATA_ X_STXFS4 24C <-> 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	OUT
X_STXFS4 24C > 23D x_SYNC X_TOUT 8D <-> 48E x_EXP075	
X_TOUT 8D <-> 48E x_EXP075	
X_UART1_CTS 74C <-> 61D x_CTS_DC	E1_TTL
X_UART1_DCD 76C <-> 63D x_DCD_D0	CE1_TTL
X_UART1_DSR 75D <-> 63C x_DSR_DC	CE1_TTL
X_UART1_DTR 76D <-> 64C x_DTR_DC	E1_TTL
X_UART1_RI 75C <-> 62D x_RI_DCE	1_TTL
X_UART1_RTS 73C <-> 60D x_RTS_DC	E1_TTL
X_UART1_RXD 73D <-> 61C x_RXD_DC	CE1_TTL
X_UART1_TXD 72D <-> 60C x_TXD_DC	E1_TTL
X_UART2_CTS 26D <-> 65C x_CTS_RS	232
X_UART2_RTS 25D <-> 66C x_RTS_RS	232
X_UART2_RXD 22D <-> 65D x_RXD_RS	\$232
X_UART2_TXD 23D <-> 66D x_TXD_RS	232
X_USBH2_CLK 60C <-> 83A x_USBHO	ST2_CLK
X_USBH2_OC 33D <-> 72D x_EXP087	
X_USBH2_PWR 32D <-> 71D x_EXP086	
X_USBOTG_CLK 59C <-> 30E x_EXP046	
X_USBOTG_DATA0 62D <-> 31F x_EXP049	
X_USBOTG_DATA1 63D <-> 31E x_EXP048	
X_USBOTG_DATA2 63C <-> 32F x_EXP050	
X_USBOTG_DATA3 65D <-> 33F x_EXP052	
X_USBOTG_DATA4 64C <-> 33E x_EXP051	
X_USBOTG_DATA5 66D <-> 35F x_EXP055	

X_USBOTG_DATA6	65C	<->	34E	x_EXP053
X_USBOTG_DATA7	67D	<->	35E	x_EXP054
X_USBOTG_DIR	61C	<->	28E	x_EXP043
X_USBOTG_NXT	61D	<->	30F	x_EXP047
X_USBOTG_OC	56D	<->	36D	x_USB_HS_FAULT
X_USBOTG_PWR	55D	<->	35D	x_USB_HS_/PSW
X_USBOTG_STP	60D	<->	29E	x_EXP045
X_USBPHY1_DM	54C	<->	34C	x_UDM
X_USBPHY1_DP	55C	<->	35C	x_UDP
X_USBPHY1_UID	56C	<->	36C	x_UID
X_USBPHY1_VBUS	53C	<->	33C	x_VBUS
X_USBPHY2_DM	58D	<->	38E	x_EXP059
X_USBPHY2_DP	57D	<->	36E	x_EXP056
X_VSTBY	2B	<->	79C	x_EXP098
#CS0_3V3	28A	<->	1E	x_EXP000
#CS1_3V3	29A	<->	1F	x_EXP001
#CS3_3V3	28B	<->	2F	x_EXP002
#CS4_3V3	30A	<->	3E	x_EXP003
#CS5_3V3	30B	<->	3F	x_EXP004
#OE_3V3	33A	<->	53A	x_/OE
#RW_3V3	32B	<->	55A	x_/WR
#X_CPU_DE	39C	<->	41D	x_CPU_/DE
#X_CPU_TRST	41C	<->	43D	x_CPU_/TRST
#X_EN_VDD_ALIVE	20D	<->	45F	x_EXP071
#X_FL_WP	62B	<->	49E	x_EXP077
#X_IRQRTC	82D	<->	48F	x_EXP076
#X_MASTER_RESET	5D	<->	5D	x_/Reset_Btn
#X_RESET_MCU	6D	<->	44C, 4D	x_/RESET_3V3
			· -, · -	

Note:

Signals in **bold** text are connected to jumpers. The mapping of this signals could differ from the mapping list. Please check the positions of the affected jumpers to find out how the signals are mapped.

15.2.3 phyMAP-i.MX35 USB-Host interface

Figure 15: PMA-005 USB-Host interface

With the phyCORE-i.MX Carrier Board PCB versions 1280.0, 1280.1 and 1280.2 there is no possibility to use the onboard USB-Host interface with the phyCORE-i.MX35 module. That's why Phytec decided to put a separate USB-Host interface on the i.MX35 mapper board. This USB-Host interface is populated when the phyCore-i.MX35 module should be used with phyCore-i.MX Carrier Board version before 1280.3.

After a workaround with PCB version 1280.3 it is possible that the phyCORE-i.MX35 module uses the USB-Host interface of the phyCORE-i.MX Carrier Board. This functionality is given with PCB version 1280.3 or higher.

To have a decision which USB-Host interface should be used, there are solder jumpers located on the mapper board that can be set.

J6	1+2 2+3	USB Host on Carrier Board is used USB Host on Mapper is used
J7	1+2 2+3	USB Host on Carrier Board is used USB Host on Mapper is used
J8	1+2 2+3	USB Host on Carrier Board is used USB Host on Mapper is used
J9	1+2 2+3	USB Host on Carrier Board is used USB Host on Mapper is used

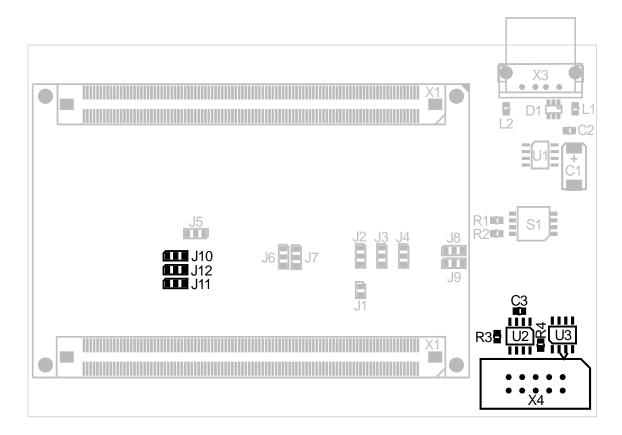
Table 17:	PMA-005 USB-Host	jumper settings
-----------	------------------	-----------------

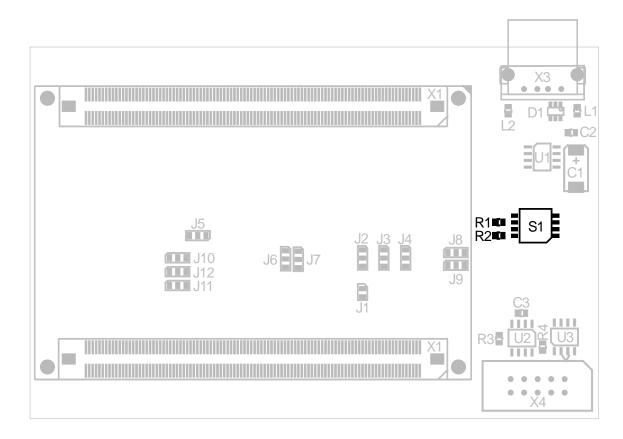
For further information of the separate jumpers J6 to J9 please refer to chapter 15.2.1, "phyMAP-i.MX35 jumper settings".

Note:

The USB-Host interface is only populated with the Upgrade (UPG) version of the phyMAP-i.MX35 mapper.

15.2.4 phyMAP-i.MX35 CAN interface




Figure 16: PMA-005 CAN interface

The i.MX35x microcontroller provides two CAN controllers. Because there is only one CAN interface available on the i.MX Carrier Board, Phytec designed a second CAN interface on the i.MX35 mapper board. With this interface the CAN1 controller is used.

Its signals are multiplexed with the SD2-Card interface. Jumpers J10 to J12 can select whether the CAN1 interface is used or the SD2 signals are mapped to the Carrier Board.

J10	1+2 2+3	X_SD2_DATA3 is mapped to PCM-970 CAN1 on Mapper is used
J11	1+2 2+3	X_SD2_DATA2 is mapped to PCM-970 CAN1 on Mapper is used
J12	1+2 2+3	X_SD2_DATA1 is mapped to PCM-970 X_SD2_DATA1 is used as GPIO for CAN enable

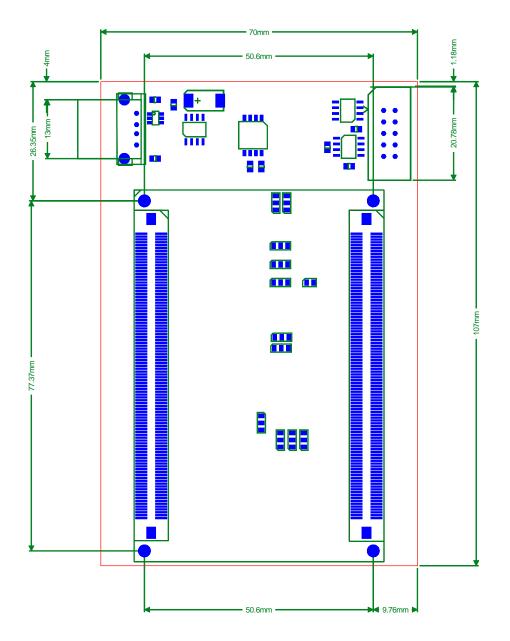
Table 18: PMA-005 CAN jumper settings

15.2.5 phyMAP-i.MX35 Boot select switch

Figure 17: PMA-005 Boot select dip-switch

The i.MX35x controller is able to boot from different devices as described in *chapter 6.1.2* Boot Mode Select. To have a choice from which device the controller should boot, the boot signals BOOT0 to BOOT4 are connected to two different dip-switches. These two switches are S5 on the i.MX35 Carrier Board and S1 on the phyMAP-i.MX35 mapper.

With S1 on the i.MX35 mapper board it is possible to select the status of BOOT3 and BOOT 4. For detailed information see Table 19 and Table 20 below.


Table	19:	x_BOOT3 selection

STATE OF SW NUMBER 1	STATE OF SW NUMBER 2	STATE OF X_BOOT3
ON	OFF	1
OFF	ON	0

Table 20: x_BOOT4 selection

STATE OF SW NUMBER 3	STATE OF SW NUMBER 4	STATE OF X_BOOT4
ON	OFF	1
OFF	ON	0

Figure 18: Physical dimensions of phyMAP-i.MX35 mapper

15.3 Cooperation of phyCORE-i.MX35 and phyCORE-i.MX Carrier Board

In this chapter you will find specific information and settings to adapt the i.MX Carrier Board to the i.MX35 module.

For information about the general functionality of the various interfaces of the phyCORE-i.MX Carrier Board, please refer to the phyCORE-i.MX Carrier Board Hardware Manual.

15.3.1 Power Supply

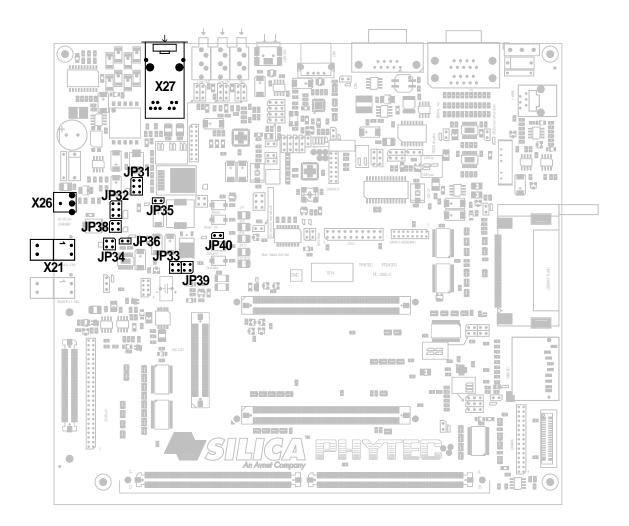


Figure 19: pyhCORE-i.MX Carrier Board and phyCORE-i.MX35 Power Supply

Subsequent you will find the different jumper settings for the three power supply modes described in the phyCORE-i.MX Carrier Board Hardware Manual.

Caution!

With the phyCORE-i.MX35 module there is no Power Management IC MC13783 provided. So compared to the phyCORE modules i.MX31 and i.MX27 there have to be different jumper settings on the phyCORE-i.MX Carrier Board. Also battery charging is not provided with the i.MX35 module.

15.3.1.1 Power Supply via Power Plug

Table 21 below shows the jumper settings to supply the phyCORE-i.MX35 module and the phyCORE-i.MX Carrier Board with a wall charger at X26 of the i.MX Carrier Board.

 Table 21:
 Jumper settings for i.MX35 power supply via power plug¹

JUMPER	SETTING	DESCRIPTION
JP31	1+3,2+4 3+5,4+6	Power source is Power Over Ethernet (POE) Power source is 5V adapter
JP32	1+3,2+4 3+5,4+6	No power switching, direct supply of VCC_3V3 Separate supply path
JP33	1+2,3+4 <mark>Open,Open</mark>	No power switching, direct supply from VCC_3V3 Separate supply path
JP34	1+2,3+4 Open,Open	No power switching, direct supply from VCC_3V3 Separate supply path
JP35	Open Closed	VCC_5V Power Supply is enabled VCC_5V Power Supply is disabled
JP36	Open Closed	VCC_3V3 Power Supply is disabled VCC_3V3 Power Supply is enabled
JP38	1+2,3+4 Open,Open	Power switching, supply from 5V adapter or POE No power switching, direct supply from VCC_3V3
JP39	1+2,3+4 Open,Open	Power switching active, Battery charge path closed No power switching, direct supply from VCC_3V3
JP40	<mark>Open</mark> Closed	No power switching active, minimum circuit Power switching active

¹ Settings for the phyCORE-i.MX35 power supply via power plug are in **bold blue**

15.3.1.2 Power Supply via Power over Ethernet

Table 22 below shows the jumper settings to supply the phyCORE-i.MX35 module and the phyCORE-i.MX Carrier Board with Power over Ethernet at X27.

 Table 22:
 Jumper settings for i.MX35 power supply via POE²

JUMPER	SETTING	DESCRIPTION
JP31	1+3,2+4 3+5,4+6	Power source is Power Over Ethernet (POE) Power source is 5V adapter
JP32	1+3,2+4 3+5,4+6	No power switching, direct supply of VCC_3V3 Separate supply path
JP33	1+2,3+4 Open,Open	No power switching, direct supply from VCC_3V3 Separate supply path
JP34	1+2,3+4 Open,Open	No power switching, direct supply from VCC_3V3 Separate supply path
JP35	Open Closed	VCC_5V Power Supply is enabled VCC_5V Power Supply is disabled
JP36	Open Closed	VCC_3V3 Power Supply is disabled VCC_3V3 Power Supply is enabled
JP38	1+2,3+4 Open,Open	Power switching, supply from 5V adapter or POE No power switching, direct supply from VCC_3V3
JP39	1+2,3+4 Open,Open	Power switching active, Battery charge path closed No power switching, direct supply from VCC_3V3
JP40	<mark>Open</mark> Closed	No power switching active, minimum circuit Power switching active

² Settings for the phyCORE-i.MX35 power supply via Power over Ethernet are in **bold blue**

15.3.1.3 Power Supply via Battery

Table 23 below shows the jumper settings to supply the phyCORE-i.MX35 module and the phyCORE-i.MX Carrier Board with a battery at X21 of the i.MX Carrier Board.

 Table 23:
 Jumper settings for i.MX35 power supply via battery³

JUMPER	SETTING	DESCRIPTION
JP31	1+3,2+4 3+5,4+6 Open,Open	Power source is Power Over Ethernet (POE) Power source is 5V adapter No Power supply from wall charger or POE
JP32	1+3,2+4 3+5,4+6	No power switching, direct supply of VCC_3V3 Separate supply path
JP33	1+2,3+4 Open,Open	No power switching, direct supply from VCC_3V3 Separate supply path
JP34	1+2,3+4 Open,Open	No power switching, direct supply from VCC_3V3 Separate supply path
JP35	Open Closed	VCC_5V Power Supply is enabled VCC_5V Power Supply is disabled
JP36	Open Closed	VCC_3V3 Power Supply is disabled VCC_3V3 Power Supply is enabled
JP38	1+2,3+4 Open,Open	Power switching, supply from 5V adapter or POE No power switching, direct supply from VCC_3V3
JP39	1+2,3+4 Open,Open	Power switching active, Battery charge path closed No power switching, direct supply from VCC_3V3
JP40	<mark>Open</mark> Closed	No power switching active, minimum circuit Power switching active

Note:

Instead of setting JP33 to 1+2, 2+3 there is the possibility to set solder jumper J3 of the phyMAPi.MX35 mapper to 2+3. In this case the two FETs Q15 and Q16 of the i.MX Carrier Board will connect battery power to VIN.

³ Settings for the phyCORE-i.MX35 power supply via battery are in **bold blue**

15.3.2 CAN Interface

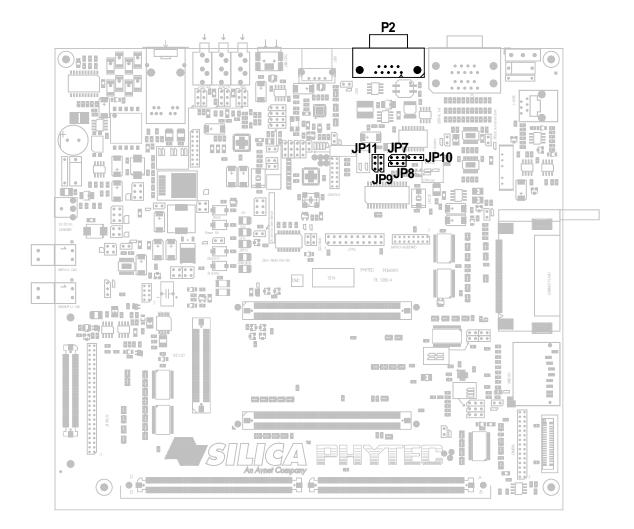
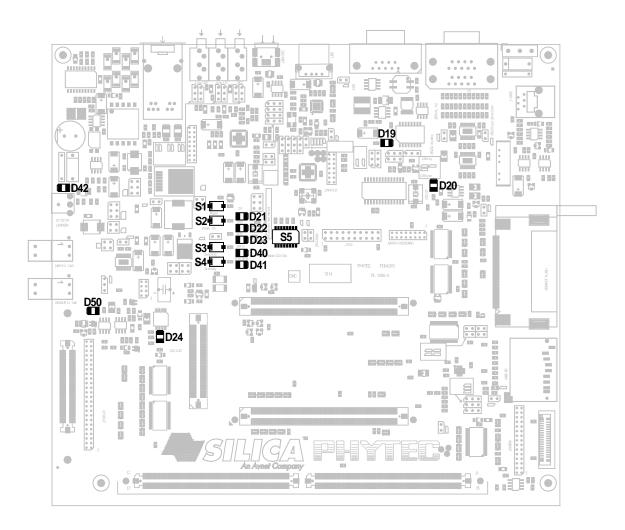


Figure 20: phyCORE-i.MX Carrier Board CAN Interface


The phyCORE-i.MX35 provides two CAN controllers. The CAN1 interface is realized on the phyMAPi.MX35 mapper. For further information about CAN1 please have a look at *chapter 15.2.4* phyMAP-i.MX35 CAN interface.

The CAN2 interface is located on the i.MX Carrier Board. Because the i.MX35x controller already has an integrated CAN controller, the CAN controller populated on the Carrier Board will not be used. *Refer to Table 24 below for the jumper settings of the CAN2 interface.*

JUMPER	SETTING	DESCRIPTION
JP7	1 + 2 2 + 3	CANTxD signal is routed to the CAN transceiver x_CAN_TxD signal is routed to the CAN transceiver
JP8	1 + 2 2 + 3	Digital Isolator is supplied by VCC_CAN Digital Isolator supply is VCC_5V
JP9	1 + 2 2 + 3	CANV- is connected to GND of i.MX Carrier Board CANV- is not connected to GND of i.MX Carrier Board
JP10	1 + 2 2 + 3	CANRxd signal is routed to the CAN transceiver x_CAN_RxD signal is routed to the CAN transceiver
JP11	1 + 2 2 + 3	CANV+ is connected to VCC_5V of i.MX Carrier Board CANV+ is connected to CAN_OUT (external supply)

 Table 24:
 CAN2 interface jumper settings⁴

⁴ Default settings for the phyCORE-i.MX35 CAN2 interface are in **bold blue**

15.3.3 Push Buttons and LEDs

Figure 21: phyCORE-i.MX Carrier Board Buttons and LEDs

The phyCORE-i.MX35 module does not use the MC13783 power management IC so the push buttons S2, S3 and S4 are not supported. Also D20 and D41 should not be supported with the i.MX35 module.

The GPIO signal to drive D40 high or low is the X_GPIO2_6 signal of the i.MX35 module.

15.3.3.1 Boot-Mode and Clock Selection

Note:

Clock selection is not available with the i.MX35 module.

The i.MX35x controller is able to boot from different devices as described in *chapter 6.1.2* Boot Mode Select. To have a choice from which device the controller should boot the boot signals BOOT0 to BOOT4 are connected to two different dip-switches. These two switches are S5 on the i.MX Carrier Board and S1 on the phyMAP-i.MX35 mapper.

With S5 on the i.MX Carrier Board it is possible to select the status of BOOT0, BOOT1 and BOOT2. *For detailed information see Table 25, Table 26 and Table 27* below.

Note:

A standard Boot Configuration is already set on the i.MX35 module. Here you can change the Boot Mode to an alternatively mode. For standard Boot Configuration all dip switches have to be in OFF position.

STATE OF SW NUMBER 3	STATE OF SW NUMBER 4	STATE OF X_BOOT0
ON	OFF	0
OFF	ON	1

Table 25: x_BOOT_MODE0 selection

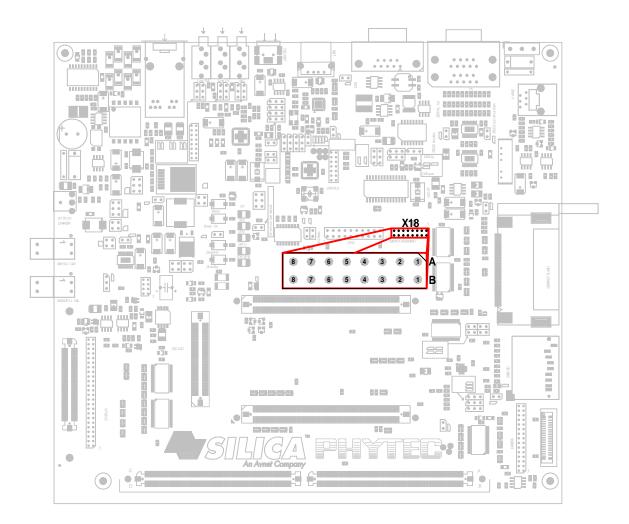
Table 26:	x_BOOT_MODE1 selection
-----------	------------------------

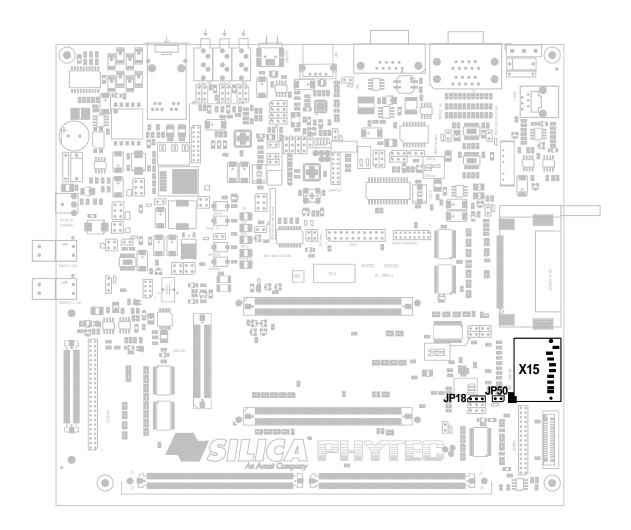
STATE OF SW NUMBER 5	STATE OF SW NUMBER 6	STATE OF X_BOOT1
ON	OFF	0
OFF	ON	1

Table 27: x_switch

STATE OF SW NUMBER 7	STATE OF SW NUMBER 8	STATE OF X_BOOT2
ON	OFF	0
OFF	ON	1

15.3.4 Keypad Interface




Figure 22: phyCORE-i.MX Carrier Board Keypad Interface

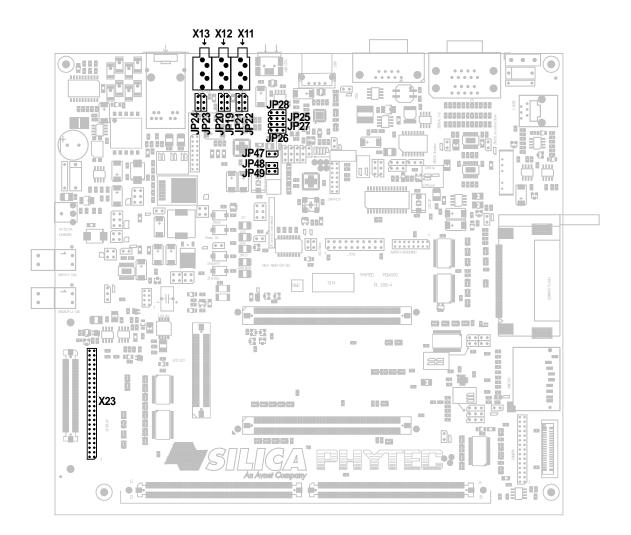
Although the phyCORE-i.MX Carrier Board supports a 6x6 keypad matrix interface, the i.MX35 module only provides a 4x4 matrix. So only the first four of the row and column lines (ROW0 to ROW3 and COL0 to COL3) are used.

15.3.5 Compact Flash Card

Note:

Compact Flash Card is not supported by the phyCORE-i.MX35 module, because there is no PCMCIA controller provided with the i.MX35x microcontroller.

15.3.6 Security Digital Card/ MultiMedia Card


Figure 23: phyCORE-i.MX Carrier Board SD/MMC Card Interface

The MMC_DETECT signal is connected to GPIO signal X_GPIO2_24 of the i.MX35 module. MMC_WP is connected to GPIO signal X_GPIO2_23.

JUMPER	SETTING	DESCRIPTION
JP50	<mark>2 + 3</mark> 1 + 2	MMC_WP signal of SD/MMC Interface is connected to GPIO MMC_WP signal of SD/MMC Interface is not connected to GPIO
JP18	2 + 3 1 + 2	Level shifter U25 is enabled Level shifter U25 is disabled

 Table 28:
 SD/MMC interface jumper settings for i.MX35 module⁵

⁵ Default settings for the phyCORE-i.MX35 SD/MMC interface are in **bold blue**

15.3.7 Audio and Touchscreen

Figure 24: phyCORE-i.MX Carrier Board Audio/Touch Interface

With the phyCORE-i.MX35 module there is no audio/touchscreen device onboard, so the i.MX35 module has to use the audio/touchscreen device (U24) on the i.MX Carrier Board. To select that this device should be used, there are a variety of jumpers which have to be set.

A detailed list of all jumper settings you will find in *Table 29* below.

JUMPER	SETTING	DESCRIPTION
JP21	2 + 3	x_MC1RIN is connected to X11
	1 + 2	MIC1 is connected to X11
JP22	2 + 3	x_MC1LIN is connected to X11
	1 + 2	MIC2 is connected to X11
JP19	2 + 3	x_RXOUTL is connected to X12
	1 + 2	LINE_INR is connected to X12
JP20	2 + 3	x_RXOUTR is connected to X12
	1 + 2	LINE_INL is connected to X12
JP23	2 + 3	x_RXINL is connected to X13
	1 + 2	LINE_OUTR is connected to X13
JP24	2 + 3	x_RXINR is connected to X13
	1 + 2	LINE_OUTL is connected to X13
JP25	2 + 3	x_TSY1 is connected to X23
	1 + 2	TP_Y- is connected to X23
JP26	2 + 3	x_TSX2 is connected to X23
	1 + 2	TP_X+ is connected to X23
JP27	2 + 3	x_TSY2 is connected to X23
	1 + 2	TP_Y+ is connected to X23
JP28	2 + 3	X_TSX1 is connected to X23
	1 + 2	TP_X- is connected to X23
JP47	open	Reset is held high, no asserting by GPIO of i.MX module
	closed	Reset can be asserted by GPIO of i.MX module
JP48	open	No access to IRQ via GPIO of i.MX module
	closed	Access to IRQ via GPIO of i.MX module
JP49	open closed	No access to PENDOWN via GPIO of i.MX module Access to PENDOWN via GPIO of i.MX module
	0.0004	

 Table 29:
 Audio/Touchscreen interface jumper settings for i.MX35 module⁶

⁶ Settings for the phyCORE-i.MX35 audio/touchscreen interface are in **bold blue**

15.3.8 USB Host

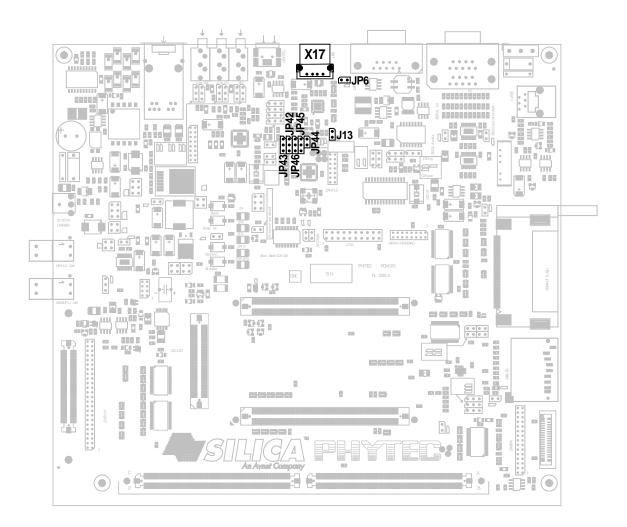


Figure 25: phyCORE-iMX Carrier Board USB-Host Interface

The i.MX35x controller comes with an integrated USB-Host-Phy, so that there is nothing more needed than an USB connector.

So the USB Host Transceiver (U26) that is realized on the i.MX Carrier Board is not needed with the phyCORE-i.MX35 module. There is a possibility to bypass the USB Host Transceiver (U24) via the jumpers JP42 to JP46 on the i.MX Carrier Board.

For further details and jumper settings have a look at Table 30.

JUMPER	SETTING	DESCRIPTION
JUNPER	JETTING	DESCRIPTION
JP13	open	USB Host transceiver U26 is disabled, USB Host is out of operation
	closed	USB Host transceiver U26 is active, USB Host is in operation
JP6	open	Reset pin is held HIGH, no Reset asserted
	closed	Reset pin is connected to GPIO2_0, Reset can be asserted
JP42	1+2	USB Host is managed on the i.MX baseboard
	2+3	USB Host is managed on the i.MX module
JP43	1+2	USB Host is managed on the i.MX baseboard
	2+3	USB Host is managed on the i.MX module
JP44	open	USB Host is managed on the i.MX module
	closed	USB Host is managed on the i.MX baseboard
JP45	1+2	USB Host is managed on the i.MX baseboard
	2+3	USB Host is managed on the i.MX module
JP46	1+2	USB Host is managed on the i.MX baseboard
	2+3	USB Host is managed on the i.MX module

 Table 30:
 UBS Host interface jumper settings for i.MX35 module⁷

⁷ Settings for the phyCORE-i.MX35 USB-Host interface are in **bold blue**

15.3.9 LCD connectors

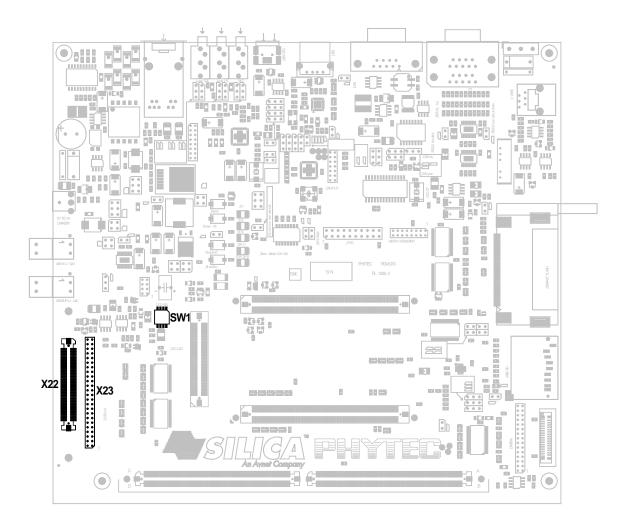
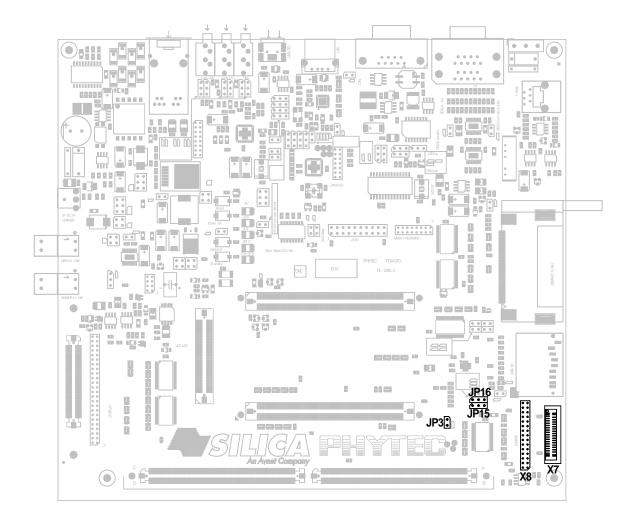


Figure 26: phyCORE-i.MX Carrier Board LCD Interfaces

The phyCORE-i.MX35 module comes with a 24-bit LCD interface. This 24-bit LCD interface is fully connected to the molex connectors X1 of the i.MX35 module and can be used in the customers application.


The phyCORE-i.MX Carrier Board has to support different i.MX modules, also modules with less than 24-bit LCD interfaces. That's why Phytec designed LCD connectors for 18-bit LCD interfaces but also for 24-bit LCDs.

So only the first 18-bits of the phyCORE-i.MX35 modules LCD interface (LD0 to LD17) are used on the i.MX Carrier Board LCD connectors.

15.3.9.1 Serial LCD

Note:

Serial LCD is not supported by the phyCORE-i.MX35 module, because the i.MX35x microcontroller does not provide Serial LCD.

15.3.10 Camera Interface

Figure 27: phyCORE-i.MX Carrier Board Camera Interface

The camera interface can be managed by the signal x_CSI_ENABLE connected to GPIO3_5 of the i.MX35 module.

JUMPER	SETTING	DESCRIPTION
JP3	closed <mark>open</mark>	Outputs of level shifter U12 are enabled, CSI is active Outputs of U12 are disabled or GPIO x_CSI_ENABLE can be used to control U12
JP16	1 + 2 2 + 3	Jumper settings to chance camera sensor specific I ² C address. For more information refer to the manual of the used camera sensor.
JP15	1 + 2 2 + 3	Use of Camera Connector X7 with VCC_CAM supply (3.3V) Use of Camera Connector X8 with external VCC_CAM_EXT supply

 Table 31:
 Camera interface jumper settings for i.MX35 module

15.3.10.1 PHYTEC Camera Connector

Note:

The phyCORE-i.MX35 module uses a 10-bit camera interface (CSI_D6 to CSI_D15) at the Camera Connectors.

15.3.11 JTAG Interface

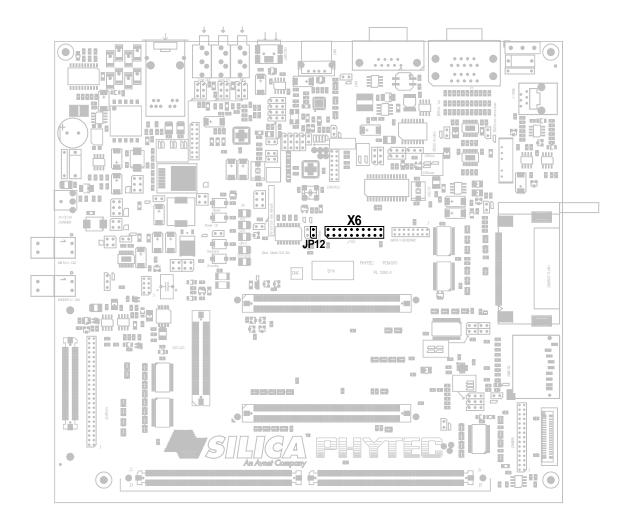


Figure 28: phyCORE-iMX Carrier Board JTAG Interface

Two JTAG modes are provided by the phyCORE-i.MX35 module dependent on the status of the sjc_mod signal of the i.MX35x controller.

Jumper JP12 can be used to select the JTAG mode the controller should operate in.

JUMPER	Setting	ΝΑΜΕ	DESCRIPTION
JP12	closed	Daisy chain ALL	For common software debug (High speed, production)
	open	SJC only	IEEE 1149.1 JTAG compatible mode

Table 32: JTAG jumper settings for phyCORE-i.MX35 module⁸

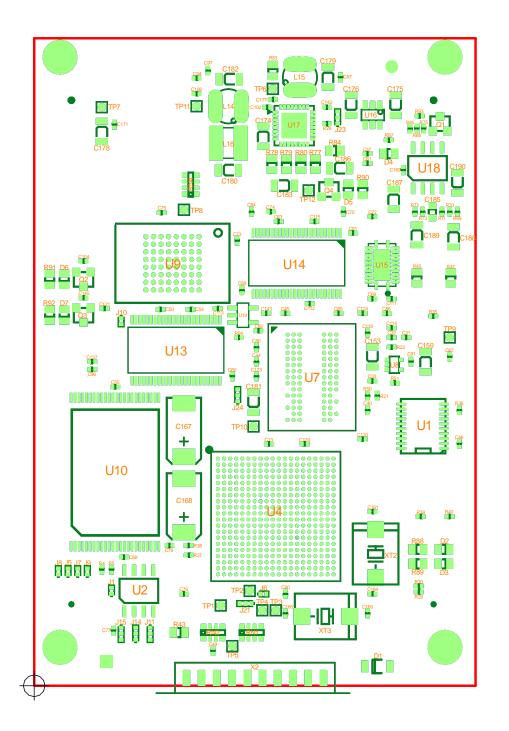
⁸ Default settings for the phyCORE-i.MX35 JTAG mode are in **bold blue**

15.3.12 Complete jumper setting list for phyCORE-i.MX35 on the i.MX Carrier Board

The following table contains all jumper settings that can be set on the phyCORE-i.MX Carrier Board. Also it shows the default jumper settings for using the phyCORE-i.MX35 module with the i.MX Carrier Board. These default jumper settings are normally done prior to delivery.

JUMPER	SETTING	DESCRIPTION
JP1	<mark>Open</mark> Closed	RS-232 transceivers are enabled RS-232 transceivers are disabled
JP2	<mark>Open</mark> Closed	RS-232 auto shutdown is disabled RS-232 auto shutdown is enabled
JP3	<mark>Open</mark> Closed	Camera interface is managed by x_CSI_ENABLE Camera interface is always enabled
JP4	<mark>Open</mark> Closed	Compact Flash is in overwrite mode Compact Flash is usable
JP5	Open Closed	Compact-Flash is Slave Compact-Flash is Master
JP6	<mark>Open</mark> Closed	USBH2 transceiver Reset is not controllable USBH2 transceiver Reset is controllable via GPIO
JP7	1+2 2+3	CAN is managed on the Carrier Board CAN is managed on the module
JP8	1+2 2+3	CAN signals is are on the level VCC_CAN (from mapper) CAN signals is are on the level VCC_5V
JP9	1+2 2+3	CAN is supplied via on Board 5V Power-Supply CAN is supplied via an external Power-Supply
JP10	1+2 2+3	CAN is managed on the Carrier Board CAN is managed on the module
JP11	1+2 2+3	CAN is supplied via on Board Power-Supply CAN is supplied via an external Power-Supply
JP12	Open Closed	Only the System JTAG Controller All core's TAPS in a single daisy chain
JP13	<mark>Open</mark> Closed	USB Host transceiver is disabled USB Host transceiver is enabled
JP14	<mark>Open</mark> Closed	VCC_FUSE = 2,775 V (no FUSE programming) VCC_FUSE = 3,3 V (use only for FUSE programming)
JP15	1+2 2+3	Camera interface supplied via on-board 3.3 V supply Camera interface is supplied via external supply

 Table 33:
 Jumper settings for i.MX35 module on i.MX Carrier Board⁹


⁹ Default settings are in **bold blue**

JP16	1+2 2+3	CMOS-Sensor I ² C address is 0x55 CMOS-Sensor I ² C Address is 0x33
1047		
JP17	open Closed	Compact Flash expansion connector is enabled Compact Flash expansion connector is disabled
JP18	1+2	MMC driver is disabled
	2+3	MMC driver is enabled
JP19	1+2	Stereo output is managed on the baseboard
	2+3	Stereo output is managed on the module
JP20	1+2	Stereo output is managed on the baseboard
	2+3	Stereo output is managed on the module
JP21	1+2	Stereo MIC is managed on the baseboard
	2+3	Stereo MIC is managed on the module
JP22	1+2	Stereo MIC is managed on the baseboard
	2+3	Stereo MIC is managed on the module
JP23	1+2	Stereo LINE IN is managed on the baseboard
5125	2+3	Stereo LINE IN is managed on the module
JP24	1+2 2+3	Stereo LINE IN is managed on the baseboard Stereo LINE IN is managed on the module
	2+3	Stereo Line in is managed on the module
JP25	1+2	Touch screen is managed on the baseboard
	2+3	Touch screen is managed on the module
JP26	1+2	Touch screen is managed on the baseboard
	2+3	Touch screen is managed on the module
JP27	1+2	Touch screen is managed on the baseboard
	2+3	Touch screen is managed on the module
1020	1+2	Touch screen is managed on the baseboard
JP28	2+3	Touch screen is managed on the module
		-
JP29	1+2	Backup voltage is supplied by ext. LICELL
	2+3	Backup voltage is supplied by onboard Goldcap
JP30	1+2 3+4	VCC_BOOT is deep-sleep test voltage
	5+6	VCC_CLK is deep-sleep test voltage VCC_JTAG is deep-sleep test voltage
1024	1+3,2+4	Power source is Power Over Ethernet (POE)
JP31	3+5,4+6	Power source is 5 V adapter
JP32	1+3,2+4	No power switching, direct supply of VCC_3V3
	3+5,4+6	Separate supply path
JP33	1+2,3+4	No power switching, direct supply from VCC_3V3
	Open,Open	Separate supply path
1		

JP34	1+2,3+4 <mark>Open,Open</mark>	No power switching, direct supply from VCC_3V3 Separate supply path
JP35	Open Closed	VCC_5V Power Supply is enabled VCC_5V Power Supply is disabled
JP36	Open Closed	VCC_3V3 Power Supply is disabled VCC_3V3 Power Supply is enabled
JP37	Open Closed	Chargemode is Single Path Chargemode is Dual Path
JP38	1+2,3+4 Open,Open	Power switching, supply from 5 V adapter or POE No power switching, direct supply from VCC_3V3
JP39	1+2,3+4 Open,Open	Power switching active, Battery charge path closed No power switching, direct supply from VCC_3V3
JP40	Open Closed	No power switching active, minimum circuit Power switching active
JP42	1+2 2+3	USB VBUS power enable managed on baseboard USB VBUS power enable managed on module
JP43	1+2 2+3	USB VBUS overcurrent managed on the baseboard USB VBUS overcurrent managed on the module
JP44	<mark>open</mark> closed	USB Host is managed on the module USB Host is managed on the baseboard
JP45	1+2 <mark>2+3</mark>	USB Host is managed on the baseboard USB Host is managed on the module
JP46	1+2 <mark>2+3</mark>	USB Host is managed on the baseboard USB Host is managed on the module
JP47	open <mark>closed</mark>	Reset of audio/touch device is not controllable Reset of audio/touch device is controllable via GPIO
JP48	open closed	IRQ of audio/touch device is not controllable IRQ of audio/touch device is controllable via GPIO
JP49	open closed	PENDOWN of audio/touch device is not controllable PENDOWN of audio/touch device is controllable via GPIO
JP50	open closed	SD card write protect is not connected to the module SD card write protect is connected to the module
JP602	Open Closed	PC_RW inverted PC_RW non-inverted
JP604	Open Closed	CF power is manged by x_EXP007 Force enabling VCC_CFL

16 Revision History

Date	Version numbers	Changes in this manual
04-June-2009	Manual L-734e_0 PCM-043 PCB# 1315.2 PMA-005 PCB# 1318.2 PCM-970 PCB# 1280.4	First draft, Preliminary documentation. Describes the phyCORE-i.MX35 with the i.MX35 Mapper and the i.MX Carrier Board.

17 Component Placement Diagram

Figure 29: phyCORE-i.MX35 component placement (top view)

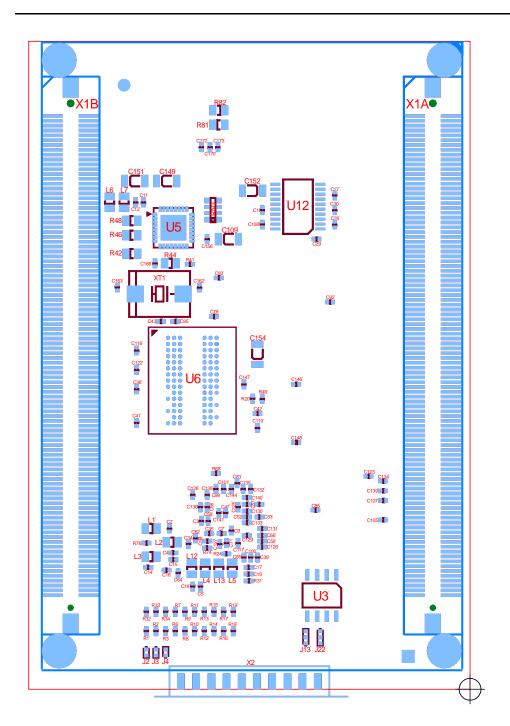


Figure 30: phyCORE-i.MX35 component placement (bottom view)

Index

1

1
10/100 Mbps Ethernet40
В
Block Diagram4
С
COM Port
D
Debug Interface43 Dimensions48
Ε
EEPROM 29, 34 EEPROM Write Protection 36 EMC 1 Emulator 45
F
Features3
Н
Humidity48
1
I ² C EEPROM
J
J603

JA-002	. 45
JTAG Interface	. 43
JTAG-Emulator Adapter	. 45

N

NAND Flash	29, 33
------------	--------

0

Operating Ten	nperature	48
Operating Volt	tage	48

Ρ

phyCORE-connector	7, 8
Physical Dimensions	47
Pin Description	7
Pinout	9
Power Consumption	48

R

RS-232 Interface	37
RS-232 Level	37
RS-232 Transceiver	37

S

2
2
7
3
)

T

Technical Specifications	.47
TTL Level	.37

U

U300	
U301	37
U302	37
U600	33
U601	34

U602 U603 UART3 UART5 USB Device USB Host USB On-The-Go	31, 32 37 37 39 39
USB OTG	

W

Weight48	5
X	
X20143	5

Document: Document number:	phyCORE-i.MX35 L-734e_0, Preliminary Version, June 2009	
How would you imp	prove this manual?	
Did you find any mi	stakes in this manual?	page
Submitted by: Customer number:		
Name:		
Company:		
Address:		
Return to:	PHYTEC Technologie Holding AG Postfach 100403 D-55135 Mainz, Germany Fax : +49 (6131) 9221-33	

Published by

© PHYTEC Messtechnik GmbH 2009

Ordering No. L-734e_0 Printed in Germany